2018年10月4日,澳洲證券投資委員會(Australian Securities and Investments Commission,簡稱:ASIC)與美國商品期貨交易委員會(US Commodity Futures Trading Commission,簡稱:CFTC)簽訂「金融技術創新合作雙邊協議」(Cooperation Arrangement on Financial Technology Innovation’ bilateral agreement,簡稱:協議),該協議內容主要針對未來金融科技(fintech)以及監理科技(regtech)之合作以及相關資訊作交換。
協議內容主要為加強雙方瞭解、識別市場發展趨勢,進而促進金融科技創新,對於運用監理科技之金融產業採取鼓勵的態度。
具體協議內容及相關合作計畫為以下條款:
1. 建立正式合作途徑,其中包含資訊分享,ASIC創新中心與LabCFTC之間的溝通;
2. 協助轉介有興趣於另一管轄權,設立企業之金融科技公司;
3. 促進監管機構定期舉行相關監管會議,討論目前時下發展趨勢,藉以相互學習;
4. 針對非公開資訊及機密資訊,給予監管機構以共享方式流通資訊。
儘管,澳洲與美國已簽訂此協議,惟須注意的地方在於,此協議本質上不具備法律約束力,對監管機構也未加註責任,並強加特定義務,以及未取代任何國內法的法律義務。
雖然,此協議不具任何法律約束力,但美國以及澳洲之金融科技創新產業間已形成一定之默契,以及交叉合作。此種互利合作,使兩國金融創新企業在雙方管轄權下,並且降低跨境成本及加深跨境無障礙性,為兩國監管機構提供最佳執行方式,以及進一步資料之蒐集。
國際海事組織(International Maritime Organization,下稱IMO)於2022年4月20日至29日於線上召開為期9天的海事安全委員會(Maritime Safety Committee,下稱MSC)第105屆例會,會議重點係咸稱之自駕船——亦即海上自動化水面船舶(Maritime Autonomous Surface Ship,下稱MASS)之航行與操作規則。本屆會議總結並延續了MSC近年針對MASS的工作,包括2018年提出MASS實驗框架規範,以及2021年提出MASS法制框架評估等。本屆會議除了賡續規劃MASS的法制路線圖(Roadmap)外,鑒於船舶相關智慧科技快速發展,MSC決議於2025年之前,針對各級MASS制定非強制性(voluntary)之章程及規定後,蒐集各國的實務經驗與意見,再於2027年將其轉為強制性(mandatory)的規定,以於2028年生效並適用於IMO全體會員國。 部分會員國(例如日本)從造船技術出發,建議未來的MASS指南與規範內容應全面覆蓋船舶的設計、建造、系統、設備的功能要求。挪威則建議應按第103屆會議所盤點之法規,優先處理「人員」相關議題,包括船員、船長及遠端操作員的資格,以及當值與行為準則等。韓國則建議,即便是等級最高的全自駕船,亦不可能全面取代人為操作,因此MASS的法制應以「人機協同」為基礎,方能合乎SOLAS公約與IMO促進海上航行安全的目的及宗旨。最後,各國亦擬議將MASS規範優先適用於「貨船」,而非「客船」。本屆會議顯示IMO已加快MASS法制工作的進程並規劃具體之立法期程,我國除了在《無人載具科技創新實驗條例》建立的監理沙盒下已有兩件自駕船實驗案,未來勢必需要對接國際海事規範,航政機關實須提前因應及規劃。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
警告台商 日亞化再出招日亞化學近日動作仍不斷,近來日亞化學分別在日本、德國及南韓相繼對台灣的代理商及客戶提出口頭警告,不得採用疑似侵權的LED。日亞化學從原先警告台灣業者,進一步對台灣業者的代理商及客戶下馬威,內外夾擊對台廠商都造成威脅。 日亞化學對台灣廠商不友善是事實,特別是部份侵犯日亞化學白光LED專利的廠家,更是恨得牙癢癢。從早期日亞化學所採取的舉動來看,最先是以口頭警告方式,或對外放風聲來嚇嚇台灣業者。後來嚇多了也不管用,最後就向法院提出假扣押,算是較明顯的法律行動。不過,後來也不見太大成效,轉而向國外下手,第一是到南韓,對台灣的客戶下手,警告他們不得採用疑似侵權的LED產品。這也達到效果,南韓客戶也不太敢用台灣的產品。隨後日亞化學又到日本,對台灣業者的代理商提出警告,最後也達成共識,不販售及採用台灣疑似侵權的產品。昨日,日亞化學更遠赴德國,向台灣業者的代理商提出警告,也達成初步共識,就是不再販售台灣疑似侵權的LED。 如此內外夾擊的大動作,看得出日亞化學對台灣疑似侵權的LED十分感冒,也以實際行動來明他們悍衛自有專利的決心,絕不容許外界對其決心有任何質疑。而在日亞化學的一連串動作後,台灣LED廠商有沒有受到傷?從各家業者的官方說法中得不答案,但從大家今年下半年來的業績表現不好來看,除了手機市場不如預期的因素外,部份原因應是被日亞從中作梗而無法順利出貨。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。