開放科學的基本理念,泛指在數位時代的背景下,各類型實驗測量機器獲得大量數據,以及網路行為累積的人類活動記錄,使各領域的研究活動趨向側重資料處理,結合分析工具後,以可閱讀的形式呈現並發表。
開放科學概念應用於行政與制度建立上,主要有兩個面向,其一為政府資助產出科學期刊論文等研究成果的開放取用(open access),意圖解決期刊雜誌訂閱費用過高,導致研究成果流通困難的問題,屬於早期開放科學關注的重點;其二則係使用官方研究資金進行研發時,於研究過程中取得的實驗、觀測及調查之研究資料開放運用,為近期政策與制度性倡議所聚焦,目的為使科學界、產業界以及一般社會大眾得以廣為接收並利用該些研究結果,令政府資金運用的一切成果均能充分回饋給國民與社會,期望藉由研究資料的公開,進一步深化該領域的研究進程、推展跨域研究或企業的產品與服務開發、以及創新活動。
舉例而言,日本內閣府於2018年提出的「統合創新戰略(統合イノベーション戦略)」第二章內,建構了國內開放科學下研究資料管理開放政策之基礎框架,關注伺服器空間內的研究資料保存與管理,與外國研究資料連動以建構巨量知識泉源,讓所有人得以廣泛活用該些研究資料,促成與加速跨領域與跨國境的新創。
本文為「經濟部產業技術司科技專案成果」
近年來,奈米科技已多方使用於食品製造業中,舉凡食品的殺菌、保存或食材的包裝等,皆為適例。然而,隨著奈米科技的影響層面逐漸擴大,無論係其功用的研發或風險的防範,仍有進一步研究之必要。 歐盟執委會(European Commission)根據2007年3月其新興健康風險科學委員會(SCENIHR)所提出之報告,認為應加強認識奈米科技對於食品安全之影響,遂邀請歐洲食品安全局(EFSA)就該領域提出科學看法。至2008年10月14日,歐洲食品安全局科學委員會即公布「奈米科技對於食品和飼料所引起之潛在風險(Potential Risks Arising from Nanoscience and Nanotechnology on Food and Feed Safety)」草擬意見,其內容係說明奈米科技應用於食品製造業之多種樣態、人為奈米材料(engineered nano materials,ENM)於食品或飼料製造過程中所產生之作用,以及判斷現有之風險評估方式能否合於需要。 該草擬意見歸結數項結論如下: (1) 因人為奈米材料之體積微小且具有高表面積,於人體吸收時較一般物質更容易產生反應。 (2) 關於化學物質於奈米尺寸下將產生何種變化,迄今無法做出令人滿意之科學論斷,因此就安全性與相關數據的累積,仍需要個別檢視。 (3) 建議應針對風險評估一事設置國際基準,且該基準可同時適用於人為奈米材料及一般化學物質。 (4) 食品與飼料中含有人為奈米材料者,於風險評估時應包括該材料特性之敘述,並進行毒理研究分析,使資訊蒐集更為完備。 由於人為奈米材料不確定之事項甚多,因此需要更豐富的資料加以釐清;而該草擬意見除提供歐盟執委會評估現行法制、研究可行措施外,亦向公眾廣徵回應;民眾可於2008年12月1日前,提供歐洲食品安全局相關科學證據或意見,待該局進行彙整後,將與歐盟會員國商討後續事宜。
英國氣候過渡計畫小組公布氣候揭露報告框架的最終版本英國氣候過渡計畫工作小組(Transition Plan Taskforce,以下稱TPT)於2023年10月9日公布其氣候揭露報告框架(TPT Disclosure Framework,下稱「框架」)最終版本及使用指引。TPT是英國財政部在2022年4月成立,負責建立氣候過渡計畫準則。TPT則於2022年11月提出框架草案,並開始徵詢產官學界意見,最後提出正式版本。 TPT框架建議企業以宏觀、有策略的方式制定氣候過渡計畫。TPT框架從企圖心、行動力和當責性三項原則出發,分別就五個必須揭露的事項說明如何在氣候揭露報告中呈現企業的氣候過渡計畫: 一、企圖心:說明企業的基礎事項,例如氣候戰略目標和商業模式。 二、行動力:說明過渡計畫的執行策略、以及擴大參與的策略。 三、當責性:說明將採用哪些指標與標的來監督計畫的執行、以及如何將過渡計畫融入企業的治理當中。 TPT也配合框架內容制定行業指引,目前已公布40個行業摘要(Sector Summary),簡述各行業可用的脫碳手段、指標與目標。未來還將公布針對銀行業、資產擁有者、資產管理者、電力公用事業和電力發電機、食品與飲料、金屬與礦業、石油和天然氣等7個行業的深度剖析(Sector Deep Dives)。 此外,TPT網站上也提供TPT框架與相關國際主流框架或準則之比較報告給各界參考,要使這套由英國自行開發、為英國內部量身打造的框架也能接軌國際,其未來實施成效值得繼續追踪觀察。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
美國FDA公布醫療器材上市前審查指令510(k)美國食品藥物管理局(The Food and Drug Administration,簡稱FDA)於今年(2014)7月更新並公布了醫療器材上市前審查(premarket notification)的指令(guidance)(該指令名稱為510(k) Program: Evaluating Substantial Equivalence in Premarket Notification,以下簡稱510(k)),針對醫療器材業者將其生產製造的醫療儀器申請上市的過程做了新的調整及規範。此指令主要是讓業界及FDA人員了解FDA在評估醫療器材申請過程中所評估的因素及要點,並藉由FDA在審查醫療器材的實務規範及審查標準來當作標準並訂定510(k)修正,以提高510(k)評估的可預測性、一致性及透明度,讓業界有一定的遵循標準。雖然FDA的指令文件並不受法律強制規範,但可供醫材藥廠清楚FDA所重視的審查程序及內容。 510(k)審查的內容主要規範於美國藥物食品化妝品管理法第513(i)條,其重點規範包括定義FDA評估實質上相同的標準:實質上相同指新醫材在技術上特點(technological characteristics)與比對性醫材相同;若該新醫材的技術特點在材料設計等和比對性醫材不盡相同,其需證明該儀器的資訊包括臨床試驗或是實驗數據等,與比對性醫材的安全及有效性性質並無歧異。以下為FDA在進行510(k)審查過程中,主要的評估內容: 1.說明欲申請上市新醫材在技術上的特點。 2.比較新醫材及比對性醫材在器材技術上特點的異同。欲申請510(k)的製造商需比較新醫材及已上市的醫材在功能上的異同。 3.決定技術特點的差異是否會影響新醫材的安全及有效性。