開放科學(open science)

  開放科學的基本理念,泛指在數位時代的背景下,各類型實驗測量機器獲得大量數據,以及網路行為累積的人類活動記錄,使各領域的研究活動趨向側重資料處理,結合分析工具後,以可閱讀的形式呈現並發表。

  開放科學概念應用於行政與制度建立上,主要有兩個面向,其一為政府資助產出科學期刊論文等研究成果的開放取用(open access),意圖解決期刊雜誌訂閱費用過高,導致研究成果流通困難的問題,屬於早期開放科學關注的重點;其二則係使用官方研究資金進行研發時,於研究過程中取得的實驗、觀測及調查之研究資料開放運用,為近期政策與制度性倡議所聚焦,目的為使科學界、產業界以及一般社會大眾得以廣為接收並利用該些研究結果,令政府資金運用的一切成果均能充分回饋給國民與社會,期望藉由研究資料的公開,進一步深化該領域的研究進程、推展跨域研究或企業的產品與服務開發、以及創新活動。

  舉例而言,日本內閣府於2018年提出的「統合創新戰略(統合イノベーション戦略)」第二章內,建構了國內開放科學下研究資料管理開放政策之基礎框架,關注伺服器空間內的研究資料保存與管理,與外國研究資料連動以建構巨量知識泉源,讓所有人得以廣泛活用該些研究資料,促成與加速跨領域與跨國境的新創。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 開放科學(open science), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8254&no=57&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市

  近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。   2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。   卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。   雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

英國競爭與市場管理局將有條件核准Vodafone與Three UK 的合併

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 英國兩家電信業者Vodafone與Three UK(下合稱「合併方」)於2023年6月宣布將以合資的方式合併,英國競爭與市場管理局(Competition and Markets Authority, CMA)於2024年12月5日就本案提出最終審查報告,決議將有條件核准合併。 合併方於審查過程中承諾在8年內於全國各地建設各頻段基站,確保行動網路涵蓋範圍、容量和速度的顯著提升並迅速布建5G,目標在2030年讓全英國的學校與醫院都能使用獨立組網(不依賴4G網路)的5G服務(5G SA)。同時其與另一家電信業者VMO2的網路共享協議中,亦提出若合併案通過後,在未來10年將額外投資110億英鎊於網路建設,並將出售部份頻率資源予VMO2。 CMA 認為本案對市場競爭及消費者權益確實可能造成諸如資費上漲或服務條件降低等負面影響,但考量合併方如能履行其網路建設計畫提案及網路共享協議,長期而言能夠顯著提高英國的行動網路品質,能促進市場的有效競爭並最終使消費者受益,合併方亦承諾於三年內對消費者保留某些既有的資費方案,以及對行動虛擬網路業者(Mobile Virtual Network Operator, MVNO)履行預先約定的價格與服務條款,以消除短期內潛在的負面影響。 後續CMA將與合併方及利益相關方協商並召開公開諮詢以確定具法律效力之承諾細節,相關建設承諾亦將由英國通訊管理局(Office of Communications, Ofcom)納為合併方頻率執照之附帶條件,未來將由CMA與Ofcom共同監督承諾之履行,CMA可對未履行承諾之行為裁罰,而Ofcom最重則可撤銷頻率執照。

聯合國科研創新推動永續發展(STI for SDGs)

  2015年9月25日,聯合國發布「2030永續發展議程(2030 Agenda for Sustainable Development)」,強調科研創新是推動永續發展願景的核心關鍵(STI for SDGs),透過科學(Science)、技術(Technology)、創新(Innovation)三項STI指標以落實各國永續發展目標(Sustainable Development Goals,簡稱SDGs)。又為達成科研創新推動永續發展目標,必須建立技術促進機制(Technology Facilitation Mechanism, TFM), TFM主要透過聯合國成員國、民間社會、私營部門、科學界及其他利益相關方間的經驗分享與合作,由三部分組成包括:聯合國跨機構任務小組(Inter-Agency Task Team, IATT),科學、技術、創新促進永續發展目標多方利害關係人論壇(Multi-stakeholder Forum on science, technology and innovation for the sustainable development Goals, STI Forum),線上平台(online platform)。   其中,聯合國跨機構任務小組(IATT)於2019年6月擬定的「科學、技術和創新促進永續發展目標路線圖(Science, Technology and Innovation for SDGs Roadmaps, STI for SDG Roadmap)」,邀請各國參與試點計畫,協助國家檢視現有科研創新政策需求、掌握未來科研發展趨勢與可能面臨的挑戰與機會,乃協助政府決策的科技前瞻支援工具,藉此達成STI for SDGs科研創新政策與永續發展目標間之平衡。關於國家科研創新路線圖規畫方法論,可以區分為基礎(Foundation)、調適(Adaptation)、整合(Integration)三部分:盤點各國現有科研創新政策需求,歸納與SDGs間落差;嘗試將SDGs理念注入政策目標,建構符合SDGs的科研創新規範與政策監管標準;運用科技前瞻方法掌握未來發展趨勢,研擬對策並面對挑戰。

TOP