2019年6 月19日歐盟普通法院(THE GENERAL COURT)於以商標並不具備獨特性裁定,長年深植人心之Adidas「三條紋」商標(下稱系爭商標)無效。
Adidas於2013年底,將系爭商標向歐盟智慧財產局提交「圖形商標」(figurative mark)之註冊申請,並登記商標用途為服裝、鞋類、帽子。而於隔年比利時鞋類公司Shoe Branding Europe BVBA依相關規定(Article 52(1)(a)、Article 7(1)(b) of Regulation No 207/2009)提出系爭商標無效之申請,經審議後系爭商標因無任何獨特性,批准無效。隨後Adidas向歐盟智慧財產局提出上訴(Articles 58 to 64 of Regulation No 207/2009),上訴聲明中並未針對系爭商標缺乏獨特性一事提出異議,而是稱系爭商標已符合「經使用取得其獨特性」之規定(Article 7(3) and Article 52(2) of Regulation No 207/2009)。惟歐盟智慧財產局認為,Adidas無法證明系爭商標在歐盟境內有經使用而取得獨特性駁回上訴,隨後Adidas再向歐盟普通法院提出訴訟。
最終歐盟普通法院之裁決,仍維持2016年歐盟智慧財產局取消此系爭商標註冊之決定。歐盟普通法院認為Adidas未能證明「三條紋」在全歐盟28國內有「獨特性」,系爭商標僅只為「普通的象徵標記」。所謂「獨特性」應為於全歐盟國之消費者清楚知悉系爭商標之「三條紋」等於Adidas,並能與其他公司之產品作出區分。
韓國中小企業暨新創事業部(Ministry of SMEs and Startups, MSS)於2024年7月31日,在首爾江南區TIPS Town的「國際創業中心」(the Global Startup Center)開幕典禮上宣布將推出「特殊創業家簽證」(Startup Korea Special Visa),計劃年底前實施。此計畫旨在擴大對國際新創的支持,延攬國際創新創業人才,以加速韓國新創生態系統國際化。 中小企業暨新創事業部部長指出,將與法務部(Ministry of Justice)跨部會合作推出此一新簽證,讓具有創新和商業潛力的國際新創更容易在韓國落地發展創立新事業。部長更進一步向國際新創喊話,韓國過去幾年成功孕育出多家重量級獨角獸企業,極具協助新創發展為獨角獸企業之優勢。 推出此一「特殊創業家簽證」措施,係為因應去年公布之「韓國新創政策」(Startup Korea)中提出對於現行創業家簽證(startup visa)進行改進之策略。 蓋韓國現行的創業家簽證相較於其他先進國家有較嚴格的條件,通常有學歷限制以及各式佐證資料的要求,對不少外國創業家構成申請之阻礙。 而新的「特殊創業家簽證」著眼於外國新創的創新與商業潛力。若外國新創被認定具創新性與獲利能力,則不考慮其學歷或是否取得相關智慧財產權等制式標準,將直接發給「特殊創業家簽證」。至於認定外國新創是否具備創新性和商業可行性的評估,將由民間甄審委員會而非公共機構負責。 韓國中小企業暨新創事業部與法務部預計年底前完成細節實施計畫,以順利啟動「特殊創業家簽證」制度。此一新簽證制度預計將顯著促進韓國新創生態系統發展,使來自世界各地具有創新和商業頭腦的創業家更容易在韓國落地生根。 後疫情時代,因應產業快速調整,各國政府無不努力擘劃一系列攬才留才策略,以促進國家經濟創新轉型發展。我國政府亦應從國際動向觀察政策趨勢,韓國中小企業暨新創事業部本次發布之新簽證制度,非常值得我國參考借鏡。
日本促進產學合作相關計畫簡介日本在促進產學合作,除了A-step計劃外,亦成立了創新中繼站構築援助事業(Support Program for Forming Innovation Hub)與創新中心(COI)等。 創新中繼站構築援助事業,由JST協助國立研發法人推動改革,以強化法人之效能,並做為大學與企業之中繼站,大學主司研究,企業則負責產業化階段,中間點則由JST與國立研發法人一同合作。JST負責召集人才、評定人才並進行創業援助、技術調查與分析。國立研發法人則提供人才培育及交流所需之資源(例如:機具設備的整修與提供,推動研究開發等等)。 創新中心(COI)則是政府預測未來10年之社會變遷及人口結構,再根據未來社會可能之需要,以建立理想社會為目標,通常進行具有高難度、高風險研發之創新中心。目前日本有18個創新中心分佈全國各地,由國家指定企業與大學共同進行,但是研究負責人只能是大學。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。