數位歐洲計畫(Digital Europe Programme)為歐盟執委會2018年6月提出的策略規畫,已於2019年4月17日由歐洲議會通過;預計2021至2027年間,歐盟將投入92億歐元用於發展高效能運算、人工智慧、網路安全和數位技能培育等領域。數位歐洲計畫目標是確保所有歐洲民眾皆能擁有應對數位挑戰所需的技能、基礎建設及相應的數位監管框架,屬於歐盟發展數位單一市場政策的一部分,預估將創造400萬個就業機會、推動4150億歐元的經濟成長,提升歐盟整體國際競爭力。歐盟為關鍵數位技術提供92億歐元科技預算分配:
(1)27億歐元用於高效能運算(預計在2022至2023年建立高效能運算及數據處理能力,2026至2027年將技術導入高階設施設備)。
(2)25億歐元投入人工智慧(支持企業及公部門使用AI、建立安全便利且能儲存大量數據的運算系統、鼓勵會員國相互合作進行AI測試)。
(3)20億歐元用於網路安全技術(採購先進網路安全設備及數位基礎設施、拓展網路安全知識與技能、優化歐盟整體網路安全系統)。
(4)7億歐元投入數位技能培育(加強中小企業短期數位培訓課程、IT專業人員長期訓練、青年企業家培訓)。
(5)13億歐元用於推廣使用數位技術(鼓勵中小企業運用先進數位技術、建構數位創新中心、關注新興技術發展)。
本文為「經濟部產業技術司科技專案成果」
儘管類似 Google News 提供新聞連結的作法在網路上屢見不鮮, Google 也認為其行為完全合法,但 比利時布魯塞爾法院於 9 月 5 日 作出的判決,仍要求 Google 在沒有獲得對方允許或支付相應費用的情況下,應 停止從法語報紙上節錄新聞片段,否則將會面臨每天一百萬歐元的罰款。 Google 雖因此暫時移除了相關新聞的轉載連結,卻打算對此判決提起上訴。 該案法官指出, Google 在這些報章媒體網站更新相關新聞後,才在 Google 網站上提供轉載內容,法院認為這不但侵害了作者的著作權,且違反比利時有關資料庫的法律。除了移除轉載連結外,法院也要求 Google 必須在 Google 比利時網站上公布該判決內容,否則另須繳交每日五十萬歐元的罰款。 這起控告 Google 的訴訟是由比利時出版集團 Copiepresse 所提起的,該集團代表比利時境內多家法語及德語報社,亦為一管理比利時法語及德語媒體著作權的專門機構。
中國大陸科技部開始進行首批國家科技成果轉移轉化示範區建設計畫於2016年10月14日,中國大陸科技部為落實國務院於5月9日發布之《促進科技成果轉移轉化行動方案》中,有關大力推動地方科技成果轉移轉化,並開展區域性科技成果轉移轉化試點示範的要求,開始啟動在河北以及寧波,兩個科技成果轉移轉化示範區的建設計畫。 中國大陸推動國家科技成果轉移轉化示範區之目的在於推動科技成果轉移轉化工作,以期能有助於完善區域科技成果轉化政策環境,並且提升區域創新之能力;示範區的建設重點將在於完善科技成果轉化服務體系、建設科技成果產業化載體、開展政策先行先試等方面開展工作,進行地方的創新驅動發展。 為此,中國大陸科技部並印發了《科技部關於建設河北•京南國家科技成果轉移轉化示範區的函》、《科技部關於建設寧波國家科技成果轉移轉化示範區的函》兩份政策文件,其中河北•京南示範區的重點在於配合北京、天津,以及河北的區域協同發展,充分發揮跨區域輻射帶動作用,並且承接北京及天津的創新要素外溢轉移,以及與河北產業創新需求進行對接。而寧波示範區將則以科技成果轉化對產業和企業創新發展的對接為核心戰略,發展以企業為主體的科技成果轉移轉化示範區域。並以這兩個示範區的測試來探索模式、累積經驗。
歐洲藥物管理局(European Medicines Agency,簡稱EMA)發佈針對準備與審查產品特性摘要(summaries of product characteristics,簡稱SmPCs)的指導方針EMA近日針對醫藥公司,在其欲申請人體藥物上市核准的申請文件中,針對如何準備與審查產品特性摘要之文件,提供醫藥公司相關的指導方針。 產品特性摘要不僅是醫藥公司之新藥物在向歐盟申請上市核准時所必須提供的重要文件,也是健康照護專業人員在獲知如何有效並安全使用藥物時的基本資訊來源。產品特性摘要在藥品生命週期存續時必須定時保持更新,以確保無藥物效用性與安全性疑慮的新問題發生;同時,其也是在藥物包裝上所必須含有的基本資訊,以確保藥物服用者能對其所服用的藥物有更多的了解和進行各類風險評估。 產品特性摘要文件,主要係依據歐盟2001/83/EC號指令第8(3)(j)條與歐盟第726/2004號法規第6(1)條之要求而提供。前述法規要求醫藥公司在提出藥物上市許可之申請時,必須遵循歐盟2001/83/EC號指令第11條之規定,附加產品特性摘要於申請文件,以供主管機關作為申請核駁之依據。在EMA針對產品特性摘要所提供的指導方針中,主要係以簡報與影片的方式,來教導醫藥公司如何在產品特性摘要的各個項目中,提供有關申請藥物更為完整與細部的背景資訊。其中,有關於解釋如何完成治療指示(therapeutic indication)與藥物藥效成分(pharmacodynamic properties of a medicine)之項目,於EMA的指導方針中,亦以明確的影片指導來協助醫藥公司提供高品質的產品特性摘要內容。 有鑑於治療人體疾病之藥物,對於人類生理與心理層面攸關重大,如何要求醫藥公司在提出人體藥物上市許可之申請時,能提供藥物完整的背景資訊,以確保從事健康照護之人員以及藥物服用者,完全了解藥物使用方式、效用與風險,則是主管機關無從推卸的責任。觀察EMA針對人體藥物之產品特性摘要製作出完整的指導方針,或許我國衛生機關也可效仿該種方式,來提供國內醫藥公司在提出藥物上市申請時之參考,以確保各項資訊透明並保護藥物使用者在「知」方面的權益。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。