數位歐洲計畫(Digital Europe Programme)

  數位歐洲計畫(Digital Europe Programme)為歐盟執委會2018年6月提出的策略規畫,已於2019年4月17日由歐洲議會通過;預計2021至2027年間,歐盟將投入92億歐元用於發展高效能運算、人工智慧、網路安全和數位技能培育等領域。數位歐洲計畫目標是確保所有歐洲民眾皆能擁有應對數位挑戰所需的技能、基礎建設及相應的數位監管框架,屬於歐盟發展數位單一市場政策的一部分,預估將創造400萬個就業機會、推動4150億歐元的經濟成長,提升歐盟整體國際競爭力。歐盟為關鍵數位技術提供92億歐元科技預算分配:

(1)27億歐元用於高效能運算(預計在2022至2023年建立高效能運算及數據處理能力,2026至2027年將技術導入高階設施設備)。

(2)25億歐元投入人工智慧(支持企業及公部門使用AI、建立安全便利且能儲存大量數據的運算系統、鼓勵會員國相互合作進行AI測試)。

(3)20億歐元用於網路安全技術(採購先進網路安全設備及數位基礎設施、拓展網路安全知識與技能、優化歐盟整體網路安全系統)。

(4)7億歐元投入數位技能培育(加強中小企業短期數位培訓課程、IT專業人員長期訓練、青年企業家培訓)。

(5)13億歐元用於推廣使用數位技術(鼓勵中小企業運用先進數位技術、建構數位創新中心、關注新興技術發展)。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 數位歐洲計畫(Digital Europe Programme), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8268&no=66&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
大學研發成果商業化評估方法初探

新興通訊設備與服務之無障礙義務—以ITU政策及美國CVAA為例

日本修訂大學與研究機關敏感技術出口管理指引,因應外為法相關行政命令修正擴大出口行為之認定範圍

  日本經濟產業省於2022年2月4日公告修正「大學與研究機關敏感技術出口管理指引」(安全保障貿易に係る機微技術管理ガイダンス(大学・研究機関用))。該指引係依據外匯與外貿法(外国為替及び外国貿易法,下稱外為法)及其行政命令訂定,用以協助大學與研究機關,建立符合出口管制法規之內控制度,防止關鍵技術外流。   經產省於2021年11月18日公告修正外為法第55條之10第1項授權訂定之行政命令「出口人法遵標準省令」(輸出者等遵守基準を定める省令の一部を改正する省令),強化「視同出口」(みなし輸出)行為管制之要件明確性。經上述行政命令修正,日本居民位於外國政府支配下,或其行動係經外國政府與組織指示,而受到外國政府與組織強烈影響之情形,視同非日本居民,向其提供敏感技術需申請出口許可。本次指引修正即以此為基礎配合調整相關內容,重點如下: 針對如何認定是否該當「視同出口」要件,追加說明模擬事例與判斷方式,例如:日本大學教授同時在外國大學兼職,又取得敏感技術時,是否該當「視同出口」要件,應以契約判斷或要求該教授應主動申報。 大學與研究機構之出口管理程序:就教職員與學生是否會在「視同出口」要件下,被認定為非日本居民,建議應由大學或機構內之相關部門於其到職或入學時,掌握必要資訊;技術提供方在提供技術前,需先確認技術取得方是否屬於「視同出口」要件下之非日本居民等。 增訂敏感技術出口人之義務:若需向直接取得敏感技術以外之人,獲取判定「視同出口」要件該當性之必要資訊,應訂定程序依此進行判定;大學或研究機構衍生新創事業若有涉及敏感技術出口之業務,大學或機構方應進行相關指導。 遠距工作與線上會議相關:應留意透過線上會議「提供技術」之可能性;存在僱傭關係但未入境日本,經遠距工作提供勞務者,視為非日本居民;於日本境內線上參加海外研討會時提供受管制技術,視同向境外出口技術而須申請許可。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP