美國舊金山監事會(San Francisco Board of Supervisors,編按:監事會是舊金山市的立法部門,性質類似議會)於2019年05月通過停止秘密監察條例(Stop Secret Surveillance Ordinance),並將其訂入行政法規(San Francisco Administrative Code)條文,包括增訂第19B章及修訂第2A.20節、第3.27節、第10.170-1節和第21.07節。根據行政法規第19B章,舊金山政府及執法機構未來將不能使用臉部辨識科技,也不能處理或利用任何自臉部辨識科技取得的資訊。
易言之,在公共場所安裝具備臉部辨識科技的監視器,或暗自使用臉部辨識科技尋找嫌疑犯都構成違法行為。然而,法規的修訂不代表舊金山內所有臉部辨識系統將全面停止。由於舊金山機場及港口屬美國聯邦政府管轄,不受地方政府法律所規範,仍可使用臉部辨識科技;而民眾及私人企業並非修訂條文的規範對象,亦可繼續採用。
此次法規的修訂引發高度關注,各界也熱烈討論。反對者表示,法規的修訂使執法機關打擊犯罪的努力付之一炬,危害民眾安全;贊成者則認為,臉部辨識科技過分侵害人民的隱私權和自由權,應對其有所限制。畢竟,臉部辨識科技並非萬無一失,尤其當受辨識者為女性或深膚色人種時,準確率往往下降許多,而有歧視的疑慮。舊金山首開先例立法,成為全美第一個限制政府使用臉部辨識科技的城市,其他城市或國家未來是否會仿效而相繼立法,值得繼續關注。
台灣自一九九○年至二○○四年止,平均每人排放量自五‧五七公噸大幅增加至十一‧五九公噸,以國際能源總署 (IEA )截至2002年統計,全球排放量前三名為美國、中國及俄羅斯,台灣則排名全球第22名。 主計處表示,依 IEA 統計資料庫顯示,二○○二年全球二氧化碳排放量前六名為美國(57.1億噸,占全球23.3﹪)、中國(34.7億噸,占14.2﹪)、俄羅斯(15.2億噸,占6.2 ﹪)、日本(11.8億噸,占4.8 ﹪)、印度(10.5億噸,占4.3﹪)及德國(8.5億噸,占3.5 ﹪)。台灣則排第 22 名(1990年為第28名),排放量占全球總量約1﹪,而經濟發展程度與我國相近的南韓、新加坡排名分別為第9名(4.7億噸,占1.9﹪)及52名(5500萬噸,占0.2﹪)。 行政院主計處據工研院能源與資源研究所統計,公佈最新「我國燃料燃燒排放二氧化碳」概況,台灣溫室氣體排放以二氧化碳為最大宗,佔八成以上,至二○○四年為 2.6億噸。 主計處指出,為抑制人為溫室氣體排放導致全球氣候變遷加劇現象,聯合國在一九九二年通過「聯合國氣候變化綱要公約」,且為落實排放管制工作,具有約束效力的「京都議定書」,已在今年二月十六日正式生效,期使在二○○八至二○一二年間,六種溫室氣體排放量平均應削減至比一九九○年低五‧二 %水準。在全球持續增溫、海平面上升及氣候變遷加劇下,台灣雖非京都議定書締約國,但政府相關部會順應國際永續發展潮流,正積極落實檢討溫室氣體排放減量政策。
簡析WTO綠色能源管制爭端案例 2005年為中國大陸電子商務法制年中國大陸於四月一日頒布實施「電子簽名法」後,將為電子交易、信用管理、安全認證、線上支付、稅收、以及隱私權保障等議題拉開序幕。雖然中國大陸對「公司法」、「票據法」、「證券法」與「拍賣法」均進行修訂並頒布新版本,然而卻未與「電子簽名法」銜接,也因此勢必進行後續修訂工作。 此外,為了加速立法進度,國務院辦公廳與國家發改會前後發布「關於加快電子商務發展的若干意見」與「電子商務專項通知」,信產部等部委的專項扶持基金並已開始接受電子商務企業的申請。同時,中國民生醫藥商務網的 CEO 表示,隨著中國大陸逐步開放外資進入電子商務、物流與線上支付等領域,中國電子商務企業必須盡快跨越誠信、支付、物流、稅收、盈利等五大面向,以贏得二次發展之歷史契機。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。