歐盟執委會於2019年3月13日針對清潔,聯網和自動化移動戰略,公布智慧運輸系統指令授權規則(Commission Delegated Regulation of 13.3.2019 supplementing Directive 2010/40/EU of the European Parliament and of the Council with regard to the deployment and operational use of cooperative intelligent transport systems),該授權規則(Delegated Regulation)係歐盟執委會為執行智慧運輸系統指令(ITS Directive)所制訂之相關細則,其目的使執委會與會員國合作提出指導分針,進一步讓各國能夠對自動及聯網化駕駛車輛進行型式認可,以加速相關創新運輸技術於歐洲協同式智慧運輸系統(C-ITS)之發展。其創新技術包含使車輛間可相互「交談」,或與道路基礎設施以及其他道路使用者「交談」,可應用在例如危險情況,道路施工和掌控交通號誌時間,將使公路運輸更安全,更清潔,更高效率。授權規則將符合容克委員會(Juncker Commission),即現任歐盟執委會主席容克領導的執政團隊,其所提出的清潔移動提案( Proposals on clean mobility),是歐盟移動現代化的另一步驟,也為本世紀下半葉的氣候中和(climate neutral)目標,即達到溫室氣體排放總量為零之目標作準備,並持續達到歐盟2050年交通事故近零死亡或零嚴重傷害的目標。
歐盟移動及運輸專員Violeta Bulc表示:「此決定將為車輛製造商,道路營運者和其他人提供一個法源依據,以便於歐洲開始大規模發展C-ITS服務,同時對新技術和市場發展持開放態度。此將極力促進我們實現我們對道路安全的願景,並作為實現聯網化和自動化移動性的重要基礎。」
車輛,交通號誌和高速公路在裝配合規之聯網技術裝置後,可向周圍的所有交通使用者發送標準化之訊息,此將是實現車間通訊的重要里程碑。該授權規則將確保不同系統間擁有協同工作能力,使所有配備該技術的站點能在開放網路中安全地與任何其他站點交換資訊,並讓系統可順利運行,透過車輛間以及車輛和交通基礎設施之間的連接,也能幫助駕駛員做出正確的決策並視交通狀況來改善道路安全性、交通效率及舒適性。
本文為「經濟部產業技術司科技專案成果」
美國食品藥物管理局(U.S. Food and drug administration, FDA)於2024年1月31日發布《品質管理系統法規最終規則》(Quality Management System Regulation(QMSR)Final Rule),主要內容為修改美國聯邦法規(Code of Federal Regulations, CFR)第21章第820條,品質系統規範(Quality System Regulation, QSR)中現行優良製造規範(Current Good Manufacturing Practice, cGMP, CGMP)內容,以降低美國國內法規與國際醫療器材品質管理系統標準ISO 13485的差異,達到減輕醫材製造商、進口商的監管負擔之效。 與美國QSR相比,ISO 13485對「風險」與「透明度」規範的要求更加嚴格,故此最終規則主要將QSR中風險管理與透明度的規範依照ISO 13485進行補足。並增修QSR中未出現於ISO 13485中或即將取代ISO 13485中同義的名詞或術語的定義,用以降低原先QSR與ISO 13485的差異。同時增設對記錄保存、標籤和資訊可追溯性要求等FDA認為ISO 13485未涵蓋完全的額外規定,用以完善整體規則完整性。 該最終規則預計於2026年2月2日正式實施。FDA預估此次修訂會有效降低醫材製造、進口商的潛在金錢與時間成本,FDA提供近3年的緩衝期,即希望相關工作人員與醫材製造商能熟悉並遵循新的QMSR。未來FDA會追蹤並評估是否應將ISO13485的變更納入QMSR中,以促進醫材監管的一致性,並為病人及時推出安全、有效且高品質的醫材。
新興經濟體之創新創業機制特色初探 日本經濟產業省公布獲選2021年數位轉型品牌之企業名單日本經濟產業省(下稱經產省)與東京證券交易所共同選出「數位轉型品牌(下稱DX品牌)」,並於2021年6月7日公布獲選「DX品牌2021」、「DX關注企業2021」的企業名單。獲選的企業不僅導入優良的資訊系統、活用數據,並以數位技術為基礎的創新商業模式及管理方法勇於挑戰變革,預期能將數位技術發揮到最大的作用。 DX品牌評價的項目包含企業的願景、商業模式、經營策略、數位技術策略實施成果與重要成果指標的公開共享、公司治理。為了加強鼓勵企業推動數位轉型,經產省與東京證券交易所從獲選「DX品牌2021」的企業名單中,再選出「DX大賞企業」,作為數位時代的領導企業。另外,今年度針對因應新冠肺炎採取優良數位技術對策的企業,又特別選出「數位×新冠肺炎對策企業」。 DX品牌即為舊有的「進攻IT管理品牌」。「進攻IT管理品牌」是經產省於2015年至2019年,為了促進日本企業在IT上的運用,與東京證券交易所共同選出積極運用IT的企業為「進攻IT管理品牌」。直到2020年後,因應數位技術產生新興的商業模式,經產省推動企業從IT運用轉向數位轉型技術,並將「進攻IT管理品牌」改為「數位轉型品牌(DX品牌)」。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。