美國證券交易委員會成員發佈「數位資產之投資契約」指導文件

  鑒於「監管不確定性」係加密貨幣市場發展之一大阻礙,2018年間,美國證券交易委員會(United States Securities and Exchange Commission, SEC)成員威廉.希曼(William Hinman)表示,SEC打算發布指導方針,協助市場參與者確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,須受到相關證券法規監管。據此,2019年4月3日,SEC公布指導文件:「數位資產之投資契約分析框架」(Framework for “Investment Contract” Analysis of Digital Assets)。惟須注意的是,該文件為內部成員之意見,不具正式法律效力,不得拘束SEC企業財務局或委員會本身,而僅屬一種指導。

  美國法上對於「投資契約」的認定標準,為聯邦最高法院建立的Howey Test,即基於合理的獲利預期、且該獲利來自他人的創業或經營努力、而投資金錢於一共同事業者,成立投資契約,進而構成證券。因此,為確認「哪些數位資產之發售,會被認為是投資契約,進而構成證券」,該文件特別針對「Howey Test」中的「基於合理的獲利預期」、「該獲利來自他人的創業或經營努力」,提出具體判斷標準,並輔以「其他相關考量因素」,供市場參與者作一參考:

(一)基於合理的獲利預期:例如「數位資產持有人可否分享企業收入或利潤,或從數位資產的增值獲得利潤」、「持有人現在或未來得否在次級市場交易」等具體標準;

(二)該獲利來自他人的創業或經營努力:例如「營運上是否去中心化」、「數位資產持有人,是否期待發行人執行或管理必要工作」等具體標準;

(三)其他相關考量因素:包含「數位資產之設計和執行,旨在滿足使用者需求,而非投機買賣」、「數位資產的價值,通常會保持不變或隨時間減損,理性持有人不會『以投資為目的』而長期持有」、「數位資產可作為真實貨幣之替代物」等等,文件中指出,只要這些其他相關考量因素越明顯,越不符合上開「基於合理的獲利預期且該獲利來自他人的創業或經營努力」。

  文件中亦強調,SEC將參酌個案事實,綜合上開各項標準,為客觀之認定。

相關連結
相關附件
※ 美國證券交易委員會成員發佈「數位資產之投資契約」指導文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8285&no=64&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
美國擬將開放中國家禽類產品之進口

  美國近期可能開放進口中國大陸將已處理或煮熟的家禽類產品至美國。美國農業部(The U.S. Department of Agriculture)表示中國若將處理過之家禽類產品出口至美國販售,前提是必須遵循美國相關食品進口規範完成妥當的進口申報程序,並且在中國所提出之出口健康認證(export health certificate)中,證明該家禽類產品有確實在適當的溫度等處理過程中進行妥善處理。   美國農業部食品安全及監督服務部門(Food Safety and Inspection Service, 簡稱FSIS)之相關負責官員於2014年6月初在美國國會中國事務執行委員會(Congressional-Executive Commission on China, 簡稱CECC)所舉行的聽證會(hearing)中指出,中國已經將出口健康認證提交給FSIS及動物植物健康監督服務(Animal and Plant Health Inspection Service, 簡稱APHIS)進行審核。在聽證會中,最讓美國負責官員顧慮是否通過開放中國進口家禽類產品之因素在於中國鬆懈的法律規範及其政府的貪汙問題,對於所出具的出口健康認證報告之確實性亦有待考證。美國負責的相關人員建議,中國大陸在產品製造過程的透明度是對於出口健康認證最重要的部分,能夠說服美國相信中國大陸對於食品及藥物安全在管理上的謹慎。   另外一個需要注意的地方在於食品原產地之標示(country-of-origin labeling,簡稱COOL)。在美國食品市場中,若食品大部分的成分來源是在美國境內處理的,則該食品會有「美國產品」(product of U.S.A.)之標示,但對於何謂「美國境內處理的食物」仍沒有明確的標準,對於國外進口美國的產品,在美國經過重新包裝或加工,則依據COOL相關規範,應標示該產品為「美國產品」。因此,在此條件下,若美國允許中國進口經過中國當局出口健康認證的家禽類產品,若進口至美國後,又在美國境內經過重新加工或是包裝,則該食品之COOL將會顯示該食品來自美國,而非出產自中國大陸。這樣的結果恐將會讓美國食品標示出現不完全精確之結果,也會讓消費者開始顧慮其購買的食品來源的顧慮及食品安全的可信度,美國將必須對進口食品的安全管控上建立更嚴謹的規範措施。

美國競爭法主管機關發布反托拉斯執法與智慧財產權報告

  美國司法部(Department of Justice, DOJ)及聯邦貿易委員會(Federal Trade Commission, FTC)於今(2007)年4月中旬,公布了眾所矚目的「反托拉斯執法與智慧財產權報告」(Antitrust Enforcement and Intellectual Property Rights, Antitrust-IP Report)。本報告綜整歸納DOJ與FTC於2002年所舉行的一系列名為「知識經濟時代之競爭與智慧財產權法制政策」(Competition and Intellectual Property Law and Policy in the Knowledge-Based Economy)公聽會重點,以及來自於不同利益團體與產業代表之看法。   DOJ與FTC於1995年曾公布「智慧財產授權之反托拉斯指導原則」(Antitrust Guidelines for the Licensing of Intellectual Property,以下簡稱1995年指導原則),基本上,甫公布的「反托拉斯執法與智慧財產權報告」的內容,重申DOJ與FTC過去依1995年指導原則的執法實務與政策,報告也特別針對幾種經常引起疑義的智慧財產運用態樣,諸如搭售(tying):專屬交易(exclusive dealing)、特殊授權條款、專利聯盟(patent pools)、交互授權(cross-licenses),肯認其亦有加強競爭並有利於消費者的效果,故DOJ與FTC將會依合理原則(rule of reason)評估個別契約的合法性,而不會逕認其係本質違法(per se unlawful)。所謂合理原則,係指由法院及競爭法主管機關,就特定協議之有利於競爭效果與反競爭效果間進行權衡,以判斷其對整體市場競爭與消費者福祉所產生之影響。   此外,DOJ與FTC也針對個別的行為,如單方拒絕授權(unilateral Refusals to License)、標準制定(standard setting)、交互授權(cross-licenses)、專利聯盟(patent pools)、使專利期間延長於法定保護期間之外(extending patent rights beyond the statutory term)等,於報告中揭示其所持的一般管理政策。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

TOP