日本內閣府公布知的財產推進計畫2019

  日本內閣府知的財產戰略本部在2019年6月21日公布本年度知的財產推進計畫(下稱本計畫),以「脫平均」、「融合」、「共感」做為本計畫三大主軸:

  1. 脫平均:依不同個體特性培養頂尖人材,促進新領域之挑戰及創造。以經產省、文科省、總務省、法務省為主責部會,實施包括培養具出色創造能力之人材、提供新創之後備資源、強化盜版因應對策、EdTech(教育科技)之活用、蒐集「STEAM教育」事例等策略。
  2. 融合:透過融合不同特性之分散個體,達成加速創新之作用。以經產省、文科省、法務省、厚生省、農林水產省、公正取引委員會為主責部會,實施包括創建智財資產平台、建構有助於AI及資料創作的相關規範等策略。另外修正資料信託認定方案的相關指針、提出資料銀行相關典範案例亦為重點。
  3. 共感:以經產省、總務省、外務省、文科省為主責部會,創造價值實現之友善環境,實施包括強化Cool Japan政策、籌劃音樂著作權利資訊資料庫、規劃能對應跨境傳輸之外語Metadata,協助將日本音樂推向海外市場等策略。

  綜上,不難發現日本已將「創造」做為本計畫發展之核心概念。從人材培育、創造資料價值及打造軟實力產值等,都顯示智慧財產除保護之外,更應提升並擴散其價值。回顧我國智財戰略綱領在2017年結束之後,並沒有相關計畫延續。然而智慧財產是一國軟實力之展現。透過潛移默化的浸潤,能達到比任何硬實力還大之功效。我國應該思考如何重啟智財戰略,拓展我國軟性底蘊。

相關連結
相關附件
你可能會想參加
※ 日本內閣府公布知的財產推進計畫2019, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8289&no=66&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
循環型採購(Circular Procurement)

  相較於綠色採購(Green public procurement, GPP)所揭櫫的於採購產品、服務或勞務時選擇於其生命週期中對於環境造成衝擊較小者,循環型採購(Circular Procurement)可說是在綠色採購的基礎上,加入循環經濟(Circular Economy)強調最大化資源利用效率的概念,使對於環境的影響與衝擊並非唯一的標準,而應考量產品、服務或勞務對資源的利用效益。   歐盟執委會於2017年10月發布《循環經濟公共採購範例與指引》(Public Procurement for A Circular Economy: Good Practice and Guidance),其中指出循環型採購的意義在於促進歐盟邁向循環經濟轉型,藉由循環型採購所創造的需求,達成循環經濟所強調封閉資源循環(Closing the Loop)以最大化資源利用效率的概念,並肯認政府採購為推動循環經濟轉型的重要誘因之一。   具體的循環型採購做法,包含選擇具高度資源循環利用性的產品,例如可維修、再利用或利於回收再循環的產品,以及以採購服務代替採購硬體等,透過循環型採購對於資源利用效率的重視,支持符合循環經濟概念的產品設計、研發技術與商業模式等創新成果,與提出這些解決方案的企業或團隊,進而達成促進社會邁向循環經濟轉型與永續發展的目標。

德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求

  德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。   諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。   綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。

新加坡智慧財產局研究顯示,智慧財產對於企業經營獲利的重要性

新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)2023年5月發布了一份名為《品牌、專利與企業績效表現的研究報告》(Brands, patents and company performance study),分別針對全球前100大上市公司及新加坡前100大上市公司進行分析,說明智慧財產等無形資產對於企業發展的重要性。 首先,IPOS在報告中對全球前100大上市公司進行分析,若該上市公司同時名列「全球500大最有價值品牌」(英國知名品牌諮詢機構Brand Finance每年發布)及/或「全球專利前250強」(美國知名專利研究公司IFI CLAIMS Patent Services每年發布),報告中將這類上市公司定義為持有最有價值品牌或最強專利組合的企業。這類企業與全球前100大上市公司中的其他企業相比,平均收入(revenue)是其他企業的2.2倍、淨利(net profit)是其他企業的1.9倍、市值(market capitalisation)是其他企業的2.3倍。 其次,本報告以新加坡前100大上市公司為分析對象,其中持有最有價值品牌(同時名列「新加坡100大最有價值品牌」)及/或最強專利組合(根據PatSnap專利資料庫的檢索資料定義)的上市公司,與新加坡前100大上市公司中的其他企業相比,平均收入是其他企業的2.4倍、淨利是其他企業的1.8倍、市值是其他企業的2.7倍。 由新加坡發布的報告可知,品牌或專利等無形資產對於企業維持競爭優勢的重要性,企業應將智慧財產布局與管理列為公司治理的重點,持續確保企業無形資產的價值(譬如企業若未持續落實商標布局與管理,將會削弱品牌價值),以強化企業的競爭力。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP