自西元2017年1月以來,英國稅務海關總署(Her Majesty's Revenue and Customs, HMRC)開始要求英國民眾使用線上語音方式進行身分認證,而民眾的聲音檔案亦被儲存至英國稅務海關總署的語音資料庫內。英國資訊委員辦公室(Information Commissioner's Office, ICO)深入調查後發現英國稅務海關總署的語音身分認證系統存在下列兩種違法情形:
英國資訊委員辦公室認為英國稅務海關總署前開情形已經違反了歐盟一般資料保護規則(General Data Protection Regulation, GDPR),根據歐盟一般資料保護規則,英國稅務海關總署在蒐集、處理或利用民眾個人資料時,必須合法、公正及透明,並應取得民眾的明確同意。英國資訊委員辦公室後續將要求英國稅務海關總署應刪除違法蒐集的生物識別資料。
本次英國資訊委員辦公室的執法行動是基於2018年5月25日生效的歐盟一般資料保護規則與英國2018年資料保護法(The Data Protection Act 2018),英國資訊委員辦公室強調創新的數位服務雖有助於民眾的生活更輕鬆,但絕不能以犧牲民眾的隱私為代價,同時也隱約透露著:「沒有一個組織(包含政府機關)能夠凌駕於法律之上。」。
2023年6月來自美國法院的兩份營業秘密意見,強調了獨立經濟價值的重要性,並打破過往學者認為該要件沒有判斷實益的擔憂。所謂的獨立經濟價值,是指任何資訊若要成為營業秘密,所需具備源自其保密狀態的經濟價值。由於兩份意見都不允許原告透過薄弱之推論與假設,來證明其營業秘密具有獨立之經濟價值,顯示出法院對獨立經濟價值之認定趨勢的變化。 其中一份意見來自美國第四巡迴上訴法院,該法院認為原告未能提供充分的證據證明其營業秘密之價值,並駁回原告以該公司被收購之價格或授權其專有資料庫VulnDB所得收入,作為其75項涉案營業秘密經濟價值的論點。美國第四巡迴上訴法院強調,原告不僅需證明所主張之營業秘密具有經濟價值,尚需證明該經濟價值源自所主張之營業秘密的保密狀態。 另一份意見來自美國俄亥俄州北區地方法院,該法院駁回了原告透過其執行長的宣誓書來證明所主張之營業秘密具有獨立經濟價值的作法。儘管該宣誓書討論了法院經常認定為營業秘密的資訊,比如交易的形式、未經審計的財務報表等,但美國俄亥俄州北區地方法院仍拒絕主觀證詞,要求原告提供所主張之營業秘密具有獨立經濟價值的客觀指標或理由。 企業該如何證明其營業秘密具有獨立之經濟價值? 企業可透過下列方式來證明其營業秘密具有獨立之經濟價值,包括: 1.開發成本:開發營業秘密的時間與材料成本,但過去的研發成本未必等於現在的經濟價值; 2.授權、租賃費:他人付費使用其營業秘密的事實; 3.內部通訊紀錄:他人承認該營業秘密所帶來的好處或前僱員、承包商與其競爭對手分享營業秘密的事實; 4.展現出優勢:透過營業秘密資訊獲得一份有價值的合約或滿足某些標準、條件之要求; 5.降低成本/提高效率:透過營業秘密減少原物料之投入及所需時間或提高生產之效率。 隨著美國法院對獨立經濟價值之認定趨勢的變化,營業秘密案件之原告所負的舉證責任將逐漸提高。據此,當企業欲提出不當使用營業秘密之損害賠償時,應盡早開始收集相關證據,以滿足法院對於營業秘密之獨立經濟價值的認定標準。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
澳洲國家交通委員會發布管制政府近用C-ITS和自駕車資料政策文件,提出政府近用自駕車蒐集資料規範原則2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下: 應平衡政府近用資料與隱私保護措施,以合理限制蒐集、使用及揭露資料。 應與現行以及新興國內外隱私與資料近用框架一致,並應進行告知。 應將資料近用權利與隱私保障納入立法中。 應以包容性與科技中立用語定義資料。 應使政府管理資料措施與現行個資保護目的協調一致。 應具體指明資料涵蓋內容、使用目的與限制使用對象,並減少資料被執法單位或經法院授權取得之阻礙。 應使用易懂之語言知會使用者關於政府蒐集、使用與揭露以及資料的重要性。 認知到告知同意是重要的,但同時應提供政府於取得同意不可行時,平衡個人隱私期待之各種可能途徑。 認知到不可逆的去識別化資料在許多情況下的困難度。 支持資料安全保護。 定期檢查資料隱私保護狀態與措施。 以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。