德國通過《小型電動車條例》,實現清潔現代化運輸並確保道路安全

  隨著現代德國城市興起騎乘小型電動車(例如:電動滑板車和電動踏板車)風潮,德國聯邦交通及數位基礎設施部(Bundesministerium für Verkehr und digitale Infrastruktur, BMVi)制定小型電動車條例(Elektrokleinstfahrzeuge-Verordnung),以實現清潔現代化運輸並確保道路安全,該條例於2019年6月15日正式生效,並取代原有的行動輔助工具條例(Mobilitätshilfenverordnung),此外,德國聯邦車輛運輸管理局(Kraftfahrt-Bundesamt, KBA)並陸續公布經審驗合格之小型電動車清單。

  由於歐洲議會及理事會通過的二輪或三輪和四輪車核可及市場監督規則(EU Nr. 168/2013)將自動平衡車輛和無座椅車輛特別排除,因此BMVi制定行動輔助工具條例,以規範例如Segways的新型運輸工,然而隨著市場推出更多新型小型電動車,原行動輔助工具條例已無法有效規範,因此制定小型電動車條例,除將原本核可小型電動車納入適用外,而本條例所稱小型電動車定義為第一,具備轉向或支撐桿;第二,最高時速設計6~20公里/小時;第三,功率限制為500瓦(自動平衡運輸工具為1400瓦);第四,最低安全要求(例如制動裝置和照明系統,駕駛動態和電動安全設備)。另條例規範重點如下:(1)小型電動車須年滿14歲方能使用,但無須考取任何駕駛執照;(2)小型電動車應行駛於自行車道上,如該段道路無設計自行車道可行駛於側車道,並禁止行駛於人行道或步行區,且不得於踏板上另搭載他人或物品及攀附於其他車輛;(3)須遵守其他一般道路交通法規,特別是保持謹慎駕駛以及酒駕規定須遵守相關規範;(4)保險部分,因小型電動車輛屬於機械動力車輛,故必須投保,並將投保證明貼紙黏貼於車輛上。

  另外,BMVi主張並支持小型電動車可攜帶上公共交通工具,然原則上,攜帶小型電動車搭乘公共交通工具,受貨物運輸規範約束,應視電車及無軌電車等固定路線動力車輛之一般條件及服務條例(BefBedV)第11條,或有關運輸公司之特殊運輸條件規範個案判斷。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 德國通過《小型電動車條例》,實現清潔現代化運輸並確保道路安全, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8303&no=55&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
經濟部選定八大產業發展綠色能源

  經濟部所擬定的「綠色能源產業發展計劃」可分為兩大領域,一是發展再生能源,如推動太陽光電、風力發電、生質柴油等,取代部分石化能源;另一則是透過節能措施減少使用化石能源的使用量,如生產LED照明、混合動力車輛等。   此發展計劃選定太陽光電、太陽能熱水系統、風力發電、生質柴油、氫能及燃料電池、LED照明、冷凍空調、混合動力車輛等八大產業為重點輔導對象,並擬利用貨物稅租稅工具、經費補貼政策及行政力主導等政策工具引導業界大力投資。透過給予進口混合動力車貨物稅減半、五千萬元以上公共工程須設置一定比例太陽光電設施等措施輔導業界投入。

日本「u-Japan政策」簡介

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引

南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。

TOP