2015年9月25日,聯合國發布「2030永續發展議程(2030 Agenda for Sustainable Development)」,強調科研創新是推動永續發展願景的核心關鍵(STI for SDGs),透過科學(Science)、技術(Technology)、創新(Innovation)三項STI指標以落實各國永續發展目標(Sustainable Development Goals,簡稱SDGs)。又為達成科研創新推動永續發展目標,必須建立技術促進機制(Technology Facilitation Mechanism, TFM), TFM主要透過聯合國成員國、民間社會、私營部門、科學界及其他利益相關方間的經驗分享與合作,由三部分組成包括:聯合國跨機構任務小組(Inter-Agency Task Team, IATT),科學、技術、創新促進永續發展目標多方利害關係人論壇(Multi-stakeholder Forum on science, technology and innovation for the sustainable development Goals, STI Forum),線上平台(online platform)。
其中,聯合國跨機構任務小組(IATT)於2019年6月擬定的「科學、技術和創新促進永續發展目標路線圖(Science, Technology and Innovation for SDGs Roadmaps, STI for SDG Roadmap)」,邀請各國參與試點計畫,協助國家檢視現有科研創新政策需求、掌握未來科研發展趨勢與可能面臨的挑戰與機會,乃協助政府決策的科技前瞻支援工具,藉此達成STI for SDGs科研創新政策與永續發展目標間之平衡。關於國家科研創新路線圖規畫方法論,可以區分為基礎(Foundation)、調適(Adaptation)、整合(Integration)三部分:盤點各國現有科研創新政策需求,歸納與SDGs間落差;嘗試將SDGs理念注入政策目標,建構符合SDGs的科研創新規範與政策監管標準;運用科技前瞻方法掌握未來發展趨勢,研擬對策並面對挑戰。
本文為「經濟部產業技術司科技專案成果」
澳洲於2018年2月22日施行個人資料洩漏計畫(Notifiable Data Breaches scheme, NDB scheme),該計畫源於澳洲早在1988年所定「澳洲隱私原則」(Australian Privacy Principles, APPs)之規定。對象包括部分政府機構、年營業額超過300萬澳幣之企業以及私營醫療機構。 根據該計畫,受APPs約束的機構於發生個資洩露事件時,必須通知當事人以及可能會造成的相關損害,另外也必須通知澳洲私隱辦公室(Office of the Australian Information Commissioner, OAIC)相關資訊。 NBD計畫主要內容如下: 一 、規範對象: 包括澳洲政府機構,年營業額超過300萬澳幣企業和非營利組織、私營醫療機構、信用報告機構、信貸提供者、稅號(TFN)受領人。 若數機構共享個人資料,則該告知義務由各機構自行分配責任。 關於跨境傳輸,根據APPs原則,於澳洲境外之機構必須以契約明定受澳洲隱私法規範,原則上若因境外機構有洩漏之虞,澳洲機構也必須負起責任。 二 、個資洩露之認定: 未經授權進入或擅自公開該機構擁有的個人資訊或個人資料滅失。 可能會對一個或多個人造成嚴重傷害(如身分竊盜、導致個人嚴重經濟損失、就業機會喪失、名譽受損等等)。 個資外洩機構無法通過補救措施防止嚴重損害的風險。 三 、OAIC所扮演之角色: 接受個資外洩之通報。 處理投訴、進行調查並針對違規事件採取其他監管行動。 向業者提供諮詢和指導。 四 、於下列情形可免通知義務: 為維護國家安全或增進公共利益所必要。 與其他法案規定相牴觸者。 五 、通知內容: 洩露資料的種類及狀況。 發生個資外洩事件機構之名稱以及聯繫窗口。 個資當事人應採取之後續行動,避免再度造成損害。 惟NBD 計畫對於個人資料的安全性沒有新的要求,主要是對APPs的補充,針對持有個人資料的機構採取合理措施,保護個人資料免遭濫用、干擾或損失, OAIC目前也正在規劃一系列有關個資洩漏事件指導方針及導入說明手冊。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。
巴西通過290號規範性指令,促進已獲外國監管機構註冊之醫療器材於國內快速上市巴西國家衛生監督局(Agência Nacional de Vigilância Sanitária, Anvisa)為強化國際監管機構間信任,並促進具有臨床效益的健康產品快速流通,於2022年8月通過第741號合議理事會決議(Resolução da Diretoria Colegiada - RDC N° 741),宣布若已透過等效外國監管機構(Autoridade Reguladora Estrangeira Equivalente, AREE)–即具有與 Anvisa一致之監管方式的外國監管機構–認定符合公認之品質、安全性和有效性標準之醫療產品,可利用AREE的註冊或授權證明相關文件,於巴西當地申請上市註冊的過程中,獲得簡化審查的優惠措施。在此框架下,Anvisa於2024年4月4日通過第290號規範性指令 (Instrução Normativa - N° 290),內文指出醫療器材及體外診斷醫材產品可於2024年6月3日起,於註冊上市的過程中提交AREE之證明文件以進入簡審程序。 第290號規範性指令明確指出,目前獲巴西政府認可之醫療器材AREE及對應之註冊或授權證明,包含以下機構:(1)美國食品及藥物管理局(U.S. Food and Drug Administration, FDA)之上市前批准(PMA)、510(k)或De Novo;(2)加拿大衛生部(Health Canada, HC) 之醫療器材許可證;(3)澳洲醫療用品管理局(Therapeutic Goods Administration, TGA)之澳洲治療用品登記冊 ;(4)日本厚生勞動省(Ministry of Health, Labour and Welfare, MHLW)之上市前批准。另外,欲適用簡化程序的註冊產品,則需與AREE頒發授權證明之產品具有「本質上相同性」(Dispositivo Médico Essencialmente Idêntico),具體包含產品之技術規格、適應症、預期用途、製造商、製造流程,以及安全與性能上的一致性。 此政策透過值得信賴的監管單位把關,不僅可促進國際間醫療器材之貿易流通,更可能有效減少巴西當局於審查過程的行政成本,進而提升國內的產品審查效率。然值得注意的是,在各國醫療器材監管法規與行政裁量基準不完全一致的現況下,各國政府對於醫療器材之分類、臨床數據及健康風險的解釋與判斷結果也不見得相同,Avisa未來在醫療器材上市審核的過程中,將如何看待及利用來自AREE之證明文件,有待未來持續觀察其實施成效。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。