澳洲國家交通委員會發布管制政府近用C-ITS和自駕車資料政策文件,提出政府近用自駕車蒐集資料規範原則

  2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下:

  1. 應平衡政府近用資料與隱私保護措施,以合理限制蒐集、使用及揭露資料。
  2. 應與現行以及新興國內外隱私與資料近用框架一致,並應進行告知。
  3. 應將資料近用權利與隱私保障納入立法中。
  4. 應以包容性與科技中立用語定義資料。
  5. 應使政府管理資料措施與現行個資保護目的協調一致。
  6. 應具體指明資料涵蓋內容、使用目的與限制使用對象,並減少資料被執法單位或經法院授權取得之阻礙。
  7. 應使用易懂之語言知會使用者關於政府蒐集、使用與揭露以及資料的重要性。
  8. 認知到告知同意是重要的,但同時應提供政府於取得同意不可行時,平衡個人隱私期待之各種可能途徑。
  9. 認知到不可逆的去識別化資料在許多情況下的困難度。
  10. 支持資料安全保護。
  11. 定期檢查資料隱私保護狀態與措施。

  以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。

本文為「經濟部產業技術司科技專案成果」

相關附件
※ 澳洲國家交通委員會發布管制政府近用C-ITS和自駕車資料政策文件,提出政府近用自駕車蒐集資料規範原則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8317&no=57&tp=1 (最後瀏覽日:2025/11/17)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

Facebook粉絲專頁管理者是否負有保護用戶個資隱私之控制者(Data Controller)責任

  2018年6月5日歐盟法院針對Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein v Wirtschaftsakademie Schleswig-Holstein GmbH訴訟進行先訴裁定,擴大解釋《資料保護指令》(Directive 95/46/EC)之「資料控制者」範圍,認為Facebook和粉絲專頁管理者皆負有保護訪客資料安全的責任。由於「資料控制者」定義在《資料保護指令》與《一般資料保護規則》(GDPR)相同,因此裁定將影響未來使用社群媒體服務和平台頁面的個資保護責任。   本案起因德國Schleswig-Holstein邦獨立資料保護中心要求 Wirtschaftsakademie教育服務公司在Facebook經營之粉絲專頁必須停用,其理由認為Facebook和Wirtschaftsakademie進行之Cookie資料蒐集、處理活動並未通知粉絲成員且因此從中獲利,然Wirtschaftsakademie認為並未委託Facebook處理粉絲成員個資,當局應直接對Facebook要求禁止蒐集處理。歐盟法院認為Wirtschaftsakademie使用Facebook所提供之平台從中受益,即使未實際擁有任何個資,仍被視為負共同責任(jointly responsible)的資料控制者,應依具體個案評估每個資料控制者責任程度。   在原《資料保護指令》並未有「資料控制者需負共同責任」之規定,本案擴大解釋資料控制者範圍,對照現行GDPR屬於第26條「共同控制者」之規範主體,然而本案將資料控制者擴張到未實際處理資料之粉絲專頁管理者,是否過於嚴格?且未來如何劃分責任與義務,皆有待觀察。

英國設立綠色財政委員會,檢討未來稅制綠化的方向

  英國為了達到稅制綠化的目標,特別在2007年底設置了一個集合產官學背景人員及消費者與環保組織代表組成的稅制檢討委員會-綠色財政委員會(Green Fiscal Commission, GFC)。GFC定位為獨立的組織,其任務是在未來的一年半期間,針對英國如要導入綠色稅與環境稅的稅制變革(green taxes and environmental tax reform, ETR),檢視完成其所涉及的相關議題,特別是導入困難之處何在,以期將過往對財貨“good“(例如勞動活動所產生的所得或收入)課稅的精神,規劃轉向為對環境有害的結果“bad“(如環境損害)予以課稅,GFC預計在2009年4月提出正式的報告,而報告探討的重點將會集中在以下三大部分:   - 有關環境稅如何執行與操作之資訊與證據   - 有關社會大眾與利害關係人對於環境稅所持態度之資訊與證據   - 針對研究報告內容對外進行適當的溝通   英國欲進行綠色稅制改革,主要是基於歲收中和(revenue neutral)的考量,意指對財貨的租稅減免(tax cuts on ‘goods’)短缺,應透過對有害活動課稅所增加的稅收,予以平衡。英國政府希望可以藉由GFC的研究成果,成果進行綠色稅制改革,讓英國的稅收來源在2020年可以達到至少有20%是源自於綠色稅。

我國去識別化實務發展-「個人資料去識別化過程驗證要求及控制措施」

我國關於個人資料去識別化實務發展 財團法人資訊工業策進會科技法律研究所 2019年6月4日 壹、我國關於個人資料去識別化實務發展歷程   我國關於個資去識別化實務發展,依據我國個資法第1條立法目的在個資之隱私保護與加值利用之間尋求平衡,實務上爭議在於達到合理利用目的之個資處理,參酌法務部103年11月17日法律字第10303513040號函說明「個人資料,運用各種技術予以去識別化,而依其呈現方式已無從直接或間接識別該特定個人者,即非屬個人資料,自非個資法之適用範圍」,在保護個人隱私之前提下,資料於必要時應進行去識別化操作,確保特定個人無論直接或間接皆無從被識別;還得參酌關於衛生福利部健保署資料庫案,健保署將其所保有之個人就醫健保資料,加密後提供予國衛院建立健保研究資料庫,引發當事人重大利益爭議,終審判決(最高行政法院106年判字第54號判決)被告(即今衛福部)勝訴,法院認為去識別化係以「完全切斷資料內容與特定主體間之連結線索」程度為判準,該案之資料收受者(本案中即為衛福部)掌握還原資料與主體間連結之能力,與健保署去識別化標準不符。但法院同時強調去識別化之功能與作用,在於確保社會大眾無法從資料內容輕易推知該資料所屬主體,並有提到關於再識別之風險評估,然而應採行何種標準,並未於法院判決明確說明。   我國政府為因應巨量資料應用潮流,推動個資合理利用,行政院以推動開放資料為目標,104年7月重大政策推動會議決議,請經濟部標檢局研析相關規範(如CNS 29191),邀請相關政府機關及驗證機構開會討論,確定「個人資料去識別化」驗證標準規範,並由財政部財政資訊中心率先進行去識別化驗證;並以我國與國際標準(ISO)調和之國家標準CNS 29100及CNS 29191,同時採用作為個資去識別化驗證標準。財政部財政資訊中心於104年11月完成導航案例,第二波示範案例則由內政部及衛生福利部(105年12月通過)接續辦理。   經濟部標準檢驗局目前不僅將ISO/IEC 29100:2011「資訊技術-安全技術-隱私權框架」(Information technology – Security techniques – Privacy framework)、ISO/IEC 29191:2012「資訊技術-安全技術-部分匿名及部分去連結鑑別之要求事項」(Information technology – Security techniques – Requirements for partially anonymous, partially unlinkable authentication),轉換為國家標準CNS 29100及CNS 29191,並據此制訂「個人資料去識別化過程驗證要求及控制措施」,提供個資去識別化之隱私框架,使組織、技術及程序等各層面得整體應用隱私權保護,並於標準公報(107年第24期)徵求新標準之意見至今年2月,草案編號為1071013「資訊技術-安全技術-個人可識別資訊去識別化過程管理系統-要求事項」(Management systems of personal identifiable information deidentification processes – Requirements),主要規定個資去識別化過程管理系統(personal information deidentification process management system, PIDIPMS)之要求事項,提供維護並改進個人資訊去識別化過程及良好實務作法之框架,並適用於所有擬管理其所建立之個資去識別化過程的組織。 貳、個人資料去識別化過程驗證要求及控制措施重點說明   由於前述說明之草案編號1071013去識別化國家標準仍在審議階段,因此以下以現行「個人資料去識別化過程驗證要求及控制措施」(以下簡稱控制措施)[1]說明。   去識別化係以個資整體生命週期為保護基礎,評估資料利用之風險,包括隱私權政策、隱私風險管理、隱私保護原則、去識別化過程、重新識別評鑑等程序,分別對應控制措施之五個章節[2]。控制措施旨在使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊(personal identifiable information, PII)進行去識別化之過程。再就控制措施對應個人資料保護法(下稱個資法)說明如下:首先,組織應先確定去識別化需求為何,究係對「個資之蒐集或處理」或「為特定目的外之利用」(對應個資法第19條第1項第4、5款)接著,對應重點在於「適當安全維護措施」,依據個資法施行細則第12條第1項規定,公務機關或非公務機關為防止個資被竊取、竄改、毀損、滅失或洩漏,採取技術上及組織上之措施;而依據個資法施行細則第12條第2項規定,適當安全維護措施得包括11款事項,並以與所欲達成之個資保護目的間,具有適當比例為原則。以下簡要說明控制措施五大章節對應個資法: 一、隱私權政策   涉及PII處理之組織的高階管理階層,應依營運要求及相關法律與法規,建立隱私權政策,提供隱私權保護之管理指導方針及支持。對應個資法施行細則第12條第2項第5款適當安全維護措施事項「個人資料蒐集、處理及利用之內部管理程序」,即為涉及個資生命週期為保護基礎之管理程序,從蒐集、處理到利用為原則性規範,以建構個資去識別化過程管理系統。 二、PII隱私風險管理過程   組織應定期執行廣泛之PII風險管理活動並發展與其隱私保護有關的風險剖繪。直接對應規範即為個資法施行細則第12條第2項第3款「個人資料之風險評估及管理機制」。 三、PII之隱私權原則   組織蒐集、處理、利用PII應符合之11項原則,包含「同意及選擇原則」、「目的適法性及規定原則」、「蒐集限制原則」、「資料極小化原則」、「利用、保留及揭露限制」、「準確性及品質原則」、「公開、透通性及告知原則」、「個人參與及存取原則」、「可歸責性原則」、「資訊安全原則」,以及「隱私遵循原則」。以上原則涵蓋個資法施行細則第12條第2項之11款事項。 四、PII去識別化過程   組織應建立有效且周延之PII去識別化過程的治理結構、標準作業程序、非預期揭露備妥災難復原計畫,且組織之高階管理階層應監督及審查PII去識別化過程之治理的安排。個資法施行細則第17條所謂「無從識別特定當事人」定義,係指個資以代碼、匿名、隱藏部分資料或其他方式,無從辨識該特定個人者,組織於進行去識別化處理時,應依需求、風險評估等確認注意去識別化程度。 五、重新識別PII之要求   此章節為選驗項目,需具體依據組織去識別化需求,是否需要重新識別而決定是否適用;若選擇適用,則保留重新識別可能性,應回歸個資法規定保護個資。 參、小結   國際上目前無個資去識別化驗證標準及驗證作法可資遵循,因此現階段控制措施,係以個資整體生命週期為保護基礎,評估資料利用之風險,使組織能建立個資去識別化過程管理系統,以管理對其所控制之個人可識別資訊進行去識別化之過程,透過與個資法對照個資法施行細則第12條規定之安全維護措施之11款事項,內化為我國業者因應資料保護與資料去識別化管理制度。   控制措施預計於今年下半年發展為國家標準,遵循個資法與施行細則,以及CNS 29100、CNS 29191之國家標準,參照國際上相關指引與實務作法,於技術上建立驗證標準規範供產業遵循。由於國家標準無強制性,業者視需要評估導入,仍建議進行巨量資料應用等資料經濟創新業務,應重視處理個資之適法性,建立當事人得以信賴機制,將有助於產業資料應用之創新,並透過檢視資料利用目的之合理性與必要性,作為資料合理利用之判斷,是為去識別化治理之關鍵環節。 [1] 參酌財團法人電子檢驗中心,個人資料去識別化過程驗證,https://www.etc.org.tw/%E9%A9%97%E8%AD%89%E6%9C%8D%E5%8B%99/%E5%80%8B%E4%BA%BA%E8%B3%87%E6%96%99%E5%8E%BB%E8%AD%98%E5%88%A5%E5%8C%96%E9%81%8E%E7%A8%8B%E9%A9%97%E8%AD%89.aspx(最後瀏覽日:2019/6/4) 財團法人電子檢驗中心網站所公告之「個人資料去識別化過程自評表_v1」包含控制措施原則、要求事項與控制措施具體內容,該網站並未公告「個人資料去識別化過程驗證要求及控制措施」,故以下整理係以自評表為準。 [2] 分別為「隱私權政策」、「PII隱私風險管理過程」、「PII之隱私權原則」、「PII去識別化過程」、「重新識別PII之要求」。

TOP