瑞士諾華藥廠成立於1996年,為全球前十大藥廠之一,其首創新藥Entresto,係作用於心臟神經內分泌系統,以對抗心力衰竭症狀,其在美國也取得相關專利(US8101659、US8796331、US8877938和US9388134),專利效期大致落在2023~2027年間。藥品上市後統計至2019年6月,Entresto的全球收入已達約7.78億美元。
印度學名藥廠Macleods、Alembic、Natco公司於2019年9月向美國食品藥品監督管理局(下簡稱FDA)提交Entresto學名藥簡易新藥上市申請(下簡稱ANDA),諾華於2019年9月11日接獲通知後,即於2019年10月24日,針對上述申請ANDA之印度學名藥廠提起專利侵權訴訟,試圖阻止該些印度學名藥廠仿製Entresto。
依照美國規定,當學名藥廠提出ANDA申請時,若專利權人在45天內提出專利訴訟,則會限制美國FDA不得於30個月內核准該ANDA申請。因此,在實務上ANDA從申請到上市,需花費約三年時間,使得學名藥廠往往會選擇在原廠藥物專利尚未到期前,提早申請藥品查驗;而原廠也通常會積極於45天內發起專利訴訟,已鞏固其專利期間之市場地位。
我國西藥專利連結制度業於2019年8月20日正式上路,建議我國相關生醫藥廠商應了解相關制度規範、與國外規定之差異,並提早納入企業內部之智財管理與智財策略規劃。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。 委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。 再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。 本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。
英國皇家內科醫學院等三個團體聯合發布基因檢測醫療之指引建議書近年隨基因檢測技術成熟及成本下降的影響,基於醫療診斷或照護目的,而對於血液、其他體液、細胞或DNA所進行之基因檢測行為已有逐漸增多的趨勢,惟基因資訊使用本身往往容易觸及倫理、道德或法律層面的爭議,導致專業醫療人員在實際為檢測時容易產生法規遵循上的困難;因此,若能有明確的程序或標準可供依循,將能大幅增進基因檢測技術的商業運用價值。 1. 有鑑於此,三個英國醫療團體-英國皇家內科醫學院(Royal College of Physicians)、英國皇家病理科醫學院(Royal College of Pathologists)及英國人類遺傳協會(British Society for Human Genetics)於今(2011)年9月聯合公布了一份『診療性基因使用行為的同意及秘密性:基因檢測及基因資訊的分享指引』報告書(Consent and confidentiality in clinical genetic practice:Guidance on genetic testing and sharing genetic information)。該建議書之主要目的即在於指引醫療人員在使用基因資料及樣本時,應如何遵循相關的法律規範,包括1998年資料保護法(the Data Protection Act of 1998)及人類組織法(the Human Tissue Act)等;內容上則涵蓋病患同意、基因醫療行為、家族史與醫療資訊的秘密性,以及當病患所提供之基因樣本可能作為研究用途時,應如何告知等事項。 建議書中特別強調當病患選擇接受基因檢測以獲得更好的診療建議時,基因資訊也開始對病患個人及其家族成員帶來的風險。基此,該報告對基因檢測行為提出三項主要建議:1. 基因檢測所得到的家族史及診斷資訊只有在其他家族成員出現健康照護(healthcare)需求時,才能進行共享,且必須在醫療人員不違反保密義務的前提下進行。2. 醫療人員應當告知病患包括基因調查對其近親屬的潛在好處、部分基因訊息可能會提供給家族親屬、基因檢測可能會得到不確定或非預期的發現、其所提供之樣本及基因資訊將如何被運用,以及該樣本若對於該類型之檢測具有相當重要性時,其檢測結果可能會被收錄於國家資料庫以作為未來醫療研究之用。3. 由於醫療干預行為可能會導致基因診斷(genetic diagnoses)結果的改變,所以應該由病患本人或專業醫師直接告知其親屬,此誤差所可能導致的遺傳風險(例如血友病患者的基因診斷結果發生誤差,可能導致其近親屬生下患有血友病的下一代)。 目前基因檢測技術雖已趨向商業化及普及化發展,但由於基因訊息一般被界定為個人隱私資訊,因此在使用、分享及儲存上有相當之限制規範,並造成醫療人員遵循上的難度。而英國皇家內科醫學院等三個醫療團體所公佈的這份指引建議書,在內容上聚焦於告知病患的程序及病患的同意,同時擬定明確的流程圖及同意表格供各醫療人員參考使用,相信對於未來英國基因檢測技術的普及化會有相當正面之幫助。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。
日本公布「資料與競爭政策檢討會報告書」並探討資料收集利用違反《獨占禁止法》行為近年來,受到物聯網和人工智慧技術高度發展影響,大數據的重要性逐漸提昇。為避免資料不當收集和資料被不當佔據等可能妨礙競爭之行為,以利業者透過資料收集、累積和分析等方式,創造出新的產業價值,日本公平交易委員會於競爭政策研究中心設置「資料與競爭政策檢討會」,自2017年1月至6月間舉辦數次檢討會,並於2017年6月6日公布《資料與競爭政策檢討會報告書》。該書一共5章,內容為第1章檢討背景,第2章回顧資料環境變化與利用現狀,第3章檢討現今競爭政策及《獨占禁止法》,第4章資料收集、利用相關行為,以及第5章企業結合審查等與資料利用相關之事項。 報告書指出,業者不當收集資料和不當佔據資料等行為,均有適用《獨占禁止法》之可能。前者係指具有優勢地位的業者,利用關係要求有業務往來的企業提供資料等行為,如原本只需要性別和年齡資訊,卻額外要求對方提供住所、電話等訊息;後者則係指業者利用不正當方法與顧客聯繫,排除其他競爭者等行為,如排他性交易、拒絕交易、差別待遇等。