2019年7月24日,世界智慧財產權組織(World Intellectual Property Organization, WIPO)、美國康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)共同發布「2019年全球創新指數報告」(Global Innovation Index 2019, GII)。GII報告每年度發行一份,希望幫助全球決策者更有效地制定政策及促進創新。本年度的報告主題是「創造健康生活─醫療創新之未來展望」,內容展望創新醫療,包括:導入人工智慧(artificial intelligence, AI)、基因體學(genomics)和健康醫療相關的手機應用程式,將會改變醫療照護。醫療創新無論是在診斷或預後,由於大數據、物聯網(Internet of Things, IoT)和人工智慧等新興科技的興起而改變。伴隨而來的是倫理、社會經濟等多方面、史無前例且迫切的挑戰。報告中提及幾項重要發現:
GII依據80項指標評比129個經濟體,指出,全球創新指數最高的國家排名前五名為:瑞士、瑞典、美國、荷蘭、英國,均為高所得國家。中高所得國家創新指數前三名為:中國、馬來西亞、保加利亞;中低所得國家前三名為:越南、烏克蘭、喬治亞;低所得國家前三名則是:盧安達、塞內加爾、坦尚尼亞。至於區域性的創性領袖國是印度(中亞與南亞)、南非(撒哈拉以南非洲)、智利(拉丁美洲和加勒比海地區)、以色列(北非與西亞)、新加坡(東南亞、東亞與大洋洲)。最頂尖的自然與科技聚落所在國家為:美國、中國、德國;並特別指出巴西、印度、伊朗、俄羅斯、土耳其表現亮眼。最頂尖五大聚落是東京-橫濱(日本)、深圳-香港(中國大陸)、首爾(南韓)、北京(中國大陸)、聖荷西-洛杉磯(美國)。
本文為「經濟部產業技術司科技專案成果」
美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。
智慧財產局修法賦予動植物專利權,但將不及繁殖物我國專利法修法後,將全面開放動植物專利,其中,最引起各界關注的問題是動植物專利權的效力。動植物專利的保護,有助於發展國內生技產業,但保護過度,又會影響農漁民生計,故智慧局在五月初發布之專利法部分條文修正草案中,增訂動、植物專利權利耗盡之範圍包括必然導致繁殖之專利生物材料本身及其所繁殖之生物材料,但不包括為繁殖之目的而使用該繁殖之生物材料之行為。 根據現行專利法第56條第1項規定,獲得動植物相關發明的物品專利權人,專有排除他人未經其同意而製造、為販賣的要約、販賣、使用或為上述目的而進口該物品之權。惟專利法第5條規定,專利物品本身經第一次販賣後,專利權效力及不於後續的實施行為。動植物的繁殖特性,如果一經販賣後,專利權效力即不及,則勢必影響動、植物發明人的權益。 基於上述理由,智慧局經參考歐盟生物技術發明指令第八條,於專利法部分條文修正草案中明訂動植物等生物材料之專利權耗盡範圍,另為了保護農民權益,此次專利法修正草案中亦特別明訂農民免責,使農民自專利權人或其授權人處取得受專利保護之植物繁殖材料,可將收穫後之種子在其農地上進行繁殖使用,而為專利權效力所不及。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。