美國加州於2019年9月通過AB-5法案(Assembly Bill No. 5),預計於2020年1月正式施行,本法目的在於強化零工經濟下非典型勞務提供者(如平台外送員)的權益保護,於加州現行勞動法令之基礎上,增訂關於各類勞務提供者之特別規定。
依本法主要規範,係推定替雇主(hirer)提供服務的工作者為僱傭契約關係下之僱員(employee),就最低工資、失業保險、勞災、醫療保險等面向,業者應對這些工作者提供等同受僱人之相關權益及保障;若要被例外認定為非成立僱傭關係之獨立承包商,則必須滿足不受公司於工作方面的控制指示、從事與公司通常業務範圍無關之業務、以及有實質接案自由等三要件,並要求業者應以上列標準判定其勞務提供者為僱員或獨立承包商,同時需於例外認定為獨立承包商時提出相關證明。
同時,本法亦考量到施行後其效力對既有營業形態之衝擊,分別採取以下措施:
本文為「經濟部產業技術司科技專案成果」
日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
歐盟MiCA擬於2024年生效並適用於規範NFT歐洲理事會在2022年10月5日公告歐盟加密資產市場監管法(The Markets in Crypto Assets regulation bill, MiCA)草案最終條文內容,此份草案已經歐洲議會眾議員通過並提交歐洲議會經濟貨幣事務委員會(European Parliament Committee on Economic and Monetary Affairs),MiCA將於2023年年初公告於歐盟官方公報,並於2024年生效施行。MiCA屬於歐盟數位金融政策(Europe’s Digital Finance Strategy)之一環,立法目的為統一多種加密代幣(crypto token) 發行和交易的法規架構,以保護加密代幣使用者和投資人權益,為歐盟金融法規未涵蓋的加密資產(如:穩定幣)提供法律確定性,及建立歐盟層級的統一規定。值得注意的是,相關規定歐盟目前並未排除適用於非同質的加密貨幣(non-fungible tokens, NFT)。 草案前言第6c點明文,不應考慮「獨特且非同質的加密資產」(unique and non-fungible crypto-asset)的小部分獨特性和非同質性,因為大量以一系列NFT形式發行加密資產應認定是具備同質性(fungibility)之指標。從而,未來在歐盟發行NFT將適用MiCA規定,包含: 一、適用傳統金融機構資金轉帳規則(travel rules),如:確保加密資產交易可被追蹤、得封鎖可疑交易等以達到防制洗錢與打擊恐怖主義融資之目的。 二、NFT作為一種加密資產,該服務供應商必須確認加密資產來源,確保加密資產並未涉及洗錢或恐怖主義融資之風險。 三、應透過NFT服務供應商協助,才能進行用戶間交易和轉帳。
美國Farmers Insurance Group在加州以竊取營業秘密為由控告前員工以及Automobile Club of Michigan2017年10月,美國知名保險公司Farmers Insurance Group(下稱Farmers)在加州法院提訴,控告前員工Venkatesh Kamath(下稱Kamath)、前資訊長Shohreh Abedi(下稱Abedi)和競爭對手American Automobile Association(下稱AAA協會)旗下的Automobile Club of Michigan(下稱Auto Club)竊取營業秘密。 Farmers聲稱,於2015年起使用Guidewire Software(下稱Guidewire),以更新其理賠處理和保險服務系統。Kamath因Guidewire業務,接觸到Farmers高度敏感與機密資訊。Abedi前為Kamath上司,曾監督Guidewire計畫初期階段。之後Abedi至Auto Club任職,協助Auto Club轉換使用Guidewire,並挖角包括Kamath在內許多Farmers員工。Kamath離職前,從Farmers電腦中拷貝超過6400份檔案,其中包括與Guidewire計畫及Famers核心業務相關的營業秘密資訊。 Farmers控訴Kamath、Abedi及Auto Club違反加州營業秘密法(California Trade Secret Act)、從事不公平競爭、違反忠實義務及其他事由,除訴請賠償外,也請求法院禁止被告使用其營業秘密。 本案非Farmers與AAA協會首次因營業秘密事宜而對訟。2010年間,Farmers曾控告AAA協會旗下Auto Club Group竊取其投保客戶機密資訊,惟該案當時經法院以Farmers未能證明有何損失或損害為由,駁回其訴。Farmers公司於2017年10月對Auto Club提起的本件訴訟,法院實務的發展為何,值得後續觀察。
美國為加強聯邦補助生物科研之安全性而提出新規範