日本國會於2019年9月6日修正並公布電信法施行細則等規範,以配合2019年5月17日通過修正之《電氣通信事業法》(以下簡稱電信法)。電信法施行細則修正內容可分為︰(1)促進電信服務市場競爭;(2)保護用戶利益等兩大面向。針對促進市場競爭,施行細則明定一律禁止以「繼續」利用通信服務及購買手機為條件提供優惠;惟如非要求繼續利用通信服務時,則可對用戶提供不超過2萬日圓額度之優惠,並針對廉價機種、因通信方式變更需利用新通信服務而購買手機,以及庫存手機等狀況設有例外規定。此外,為避免電信業者在用戶解除契約時透過不當手段影響競爭關係,施行細則亦明定電信契約之年限(2年)及違約金上限(1000萬日圓),並新增業者必須提供無期間限制之契約,以及根據定期契約之有無,月費差額上限為170萬日圓等規定。
在保護用戶利益方面,電信法修正時新增有關代理販售店申請制度,以及業者應於推銷時向消費者告知姓名及行銷目的等規定,故施行細則亦配合上述修法,進一步規範上述規定之適用範圍和例外,指出於店面進行銷售時,因店員都配戴名牌,故不用另外告知姓名。
本文為「經濟部產業技術司科技專案成果」
印第安那州首席檢察官Greg Zoeller對Wellpoint保險公司提起訴訟標的金額30萬美元之損害賠償訴訟,主張該公司因遲延向首席檢察署及超過32,000萬因個人資料外洩影響所及之客戶通報個資外洩事件,而違反印第安那州通報法〈Indiana notification laws〉中通報及揭露規定〈Chapter 3. Disclosure and Notification Requirements及Chapter 3. Disclosure and Notification Requirements〉,依法各得請求15萬美元罰金,此為印第安那州提起之首件違反通報義務之訴訟。 前述法令於2009年7月生效,新法規定個人資料擁有者〈database owners〉負有「通報義務」,其於個資外洩事件發生後,必須在「合理期間」〈within a reasonable period of time〉內,對「潛在受影響之個人」〈both the individuals potentially affected by a data breach〉,以及檢察署通報,惟經調查,該公司未於合理時間內通報前述應通報之對象。 經查該公司於今〈2010〉年2、3月間即發現客戶個資外洩,卻6月18日始通知客戶,檢察署展開調查後認定其遲延通報無正當理由,故代表印地安那州向其提起民事賠償。 前述所指外洩之個人資料包括:提出投保申請者之個人資料內容,諸如「社會安全碼」〈social security number〉、「財務資訊」〈financial information〉、「健康記錄」〈health records〉,因該保險公司網頁之照管者〈siteminder〉未能實行安全防護,使盜竊身分之人〈identity thief〉得以改變統一資源定址器〈URL〉而窺見申請者的個人資訊。 除印第安那州客戶外,該保險公司因客戶個資外洩亦使其他州投保申請者資訊曝露,包括:美國加州、科羅拉多、康乃迪克、肯特基、密蘇里、內華達、新罕布夏、俄亥俄及威思康辛等九個州,約有47萬個客戶可能因此受影響。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
歐盟推出《網路韌性法案》補充歐盟網路安全框架歐盟為提升網路數位化產品之安全性,解決現有網路安全監管框架差距,歐盟執委會於2022年9月提出《網路韌性法案》(EU Cyber Resilience Act)草案,對網路供應鏈提供強制性網路安全標準,並課予數位化產品製造商在網絡安全方面之義務。該法案亦提出以下四個具體目標: 1.確保製造商對於提升產品之網路安全涵蓋整個生產週期; 2.為歐盟網路安全之合法性創建單一且明確之監管架構; 3.提高網路安全實踐之透明度,以及製造商與其產品之屬性; 4.為消費者和企業提供隨時可用之安全產品。 《網路韌性法案》要求製造商設計、開發和生產各種硬體、有形及軟體、無形之數位化產品時,須滿足法規要求之網路安全標準,始得於市場上銷售,並應提供清晰易懂之使用說明予消費者,使其充分知悉網路安全相關資訊,且至少應於五年內提供安全維護與軟體更新。 《網路韌性法案》將所涵蓋之數位化產品分為三種類別(產品示例可參考法案附件三):I類別、II類別,以及預設類別。I類別產品之網路安全風險級別低於II類別產品、高於預設類別,須遵守法規要求之安全標準或經由第三方評估;II類別為與網路安全漏洞具密切關連之高風險產品,須完成第三方合格評估始符合網路安全標準;預設類別則為無嚴重網路安全漏洞之產品,公司得透過自我評估進行之。法案另豁免已受其他法律明文規範之數位化產品,惟並未豁免歐洲數位身份錢包、電子健康記錄系統或具有高風險人工智慧系統產品。 若製造商未能遵守《網路韌性法案》之基本要求和義務,將面臨高達1500萬歐元或前一年度全球總營業額2.5%之行政罰鍰。各歐盟成員國亦得自行制定有效且合於比例之處罰規則。
歐洲議會表決通過碳邊境調整機制草案之議會版本,增修管制範圍、施行時間、主管機關和收入利用等規範歐洲議會於2022年6月22日表決通過碳邊境調整機制(Carbon Border Adjustment Mechanism, CBAM)草案之議會版本,為該次決議通過三項草案中之一項,而包含CBAM在內之三者皆屬歐盟去年7月所公布「Fit for 55」溫室氣體減量包裹法案中的一部份,正式施行後將要求進口商向歐盟購買「CBAM憑證」,繳交進口產品對應之碳排放量費用,希望促進非歐盟國家減少碳排放以及防止碳洩漏(carbon leakage)的風險,並避免氣候政策不積極國家的企業擁有不公平優勢,以進一步降低全球碳排放。而在此次議會通過之版本中,有幾點作了調整: (1)擴大管制範圍:在產品方面,除原先歐盟執委會所提出之水泥、鋼鐵、鋁、肥料及電力等5大類產品外,歐洲議會亦希望納入有機化學品、塑膠、氫氣和氨等產品。為確保順利實施,委員會將對有機化學品和聚合物進行技術特性之評估;同時歐洲議會也計畫將管制擴大至間接排放,即包含製造商使用電力所產生之排放,以更能實際反映歐洲工業的二氧化碳成本; (2)逐步實施CBAM並提前終止歐盟排放交易系統(Emissions Trading Scheme, ETS)的免費配額:CBAM預計從2023年1月1日開始試運行,原草案規劃試運行至2025年底,現延長至2026年底;在2023年至2026年過渡期間,歐盟出口商保有100%的歐盟ETS免費配額;而自2027年起則正式施行向進口至歐盟產品之碳含量進行定價,並要求進口商購買與繳交相對應之CBAM憑證。雖然出口商仍有ETS免費配額,但該配額將逐步遞減,並於2032年之前終止免費配額制度,由CBAM完全取代之,以避免對歐盟產業有雙重保護的情形; (3)設立CBAM集中管理機構:歐洲議會認為與其在各會員國內分別指派共27個個別之主管機關(competent authorities),應設立歐盟單一機構集中管理,以提升實施效率、透明度及成本效益;同時,也可避免第三國進口商在各會員國間因管制密度之差異而有挑選法院(forum shopping)的情況; (4)CBAM收入之應用:歐洲議會建議CBAM之收益應歸入歐盟預算,以對最低度開發國家(LDCs)提供至少相當於CBAM收入的財務援助,協助其製造業脫碳,以共同落實歐盟氣候目標,以及《巴黎協定》等國際承諾。