美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。
FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性?
於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
本文為「經濟部產業技術司科技專案成果」
歐盟「人工智慧法」達成政治協議, 逐步建立AI準則 資訊工業策進會科技法律研究所 2023年12月25日 隨著AI(人工智慧)快速發展,在各領域之應用日益廣泛,已逐漸成為國際政策、規範、立法討論之重點。其中歐盟人工智慧法案(Artificial Intelligence Act, AI Act,以下簡稱AIA法案)係全球首部全面規範人工智慧之法律架構,並於2023年12月9日由歐洲議會及歐盟部長歷史會達成重要政治協議[1],尚待正式批准。 壹、發佈背景 歐洲議會及歐盟部長理事會針對AIA法案已於本年12月9日達成暫時政治協議,尚待正式批准。在法案普遍實施前之過渡期,歐盟執委會將公布人工智慧協定(AI Pact),其將號召來自歐洲及世界各地AI開發者自願承諾履行人工智慧法之關鍵義務。 歐盟人工智慧法係歐盟執委會於2021年4月提出,係全球首項關於人工智慧的全面法律架構,該項新法係歐盟打造可信賴AI之方式,將基於AI未來可證定義(future proof definition),以等同作法直接適用於所有會員國[2]。 貳、內容摘要 AIA法案旨在確保進入並於歐盟使用之AI人工智慧系統是安全及可信賴的,並尊重人類基本權利及歐盟價值觀,在創新及權利義務中取得平衡。對於人工智慧可能對社會造成之危害,遵循以風險為基礎模式(risk-based approach),即風險越高,規則越嚴格,現階段將風險分為:最小風險(Minimal risk)、高風險(High-risk)、無法接受的風險(Unacceptable risk)、特定透明度風險(Specific transparency risk)[3]。與委員會最初建議版本相比,此次臨時協定主要新增內容歸納如下: 臨時協議確立廣泛域外適用之範圍,包含但不限於在歐盟內提供或部署人工智慧系統的企業[4]。但澄清該法案不適用於專門用於軍事或國防目的之系統。同樣,該協定規定不適用於研究和創新目的之人工智慧系統,也不適用於非專業原因之個人AI使用。 臨時協議針對通用AI(General purpose AI)[5]模型,訂定相關規定以確保價值鏈之透明度;針對可能造成系統性風險之強大模型,訂定風險管理與重要事件監管、執行模型評估與對抗性測試等相關義務。這些義務將由執委會與業界、科學社群、民間及其他利害關係人共同制定行為準則(Codes of practices)。 考量到人工智慧系統可用於不同目的之情況,臨時協議針對通用AI系統整合至高風險系統,並就基礎模型部分商定具體規則,其於投放市場之前須遵守特定之透明度義務,另強調對於情緒識別系統有義務在自然人接觸到使用這種系統時通知他們。 臨時協議針對違反禁止之AI應用,罰款金額自3,500萬歐元 或全球年營業額7%(以較高者為準)。針對違反其他義務罰款1,500萬歐元或全球年營業額3%,提供不正確資訊罰 款750萬歐元或全球年營業額1.5%。針對中小及新創企業違反人工智慧法之行政罰款將設定適當之上限。 參、評估分析 在人工智慧系統之快速發展衝擊各國社會、經濟、國力等關鍵因素,如何平衡技術創新帶來之便利及保護人類基本權利係各國立法重點。此次歐盟委員會、理事會和議會共同對其2021年4月提出之AIA法案進行審議並通過臨時協議,係歐洲各國對於現下人工智慧運作之監管進行全面的討論及認可結果,對其他國家未來立法及規範有一定之指引效果。 此次臨時協議主要針對人工智慧定義及適用範圍進行確定定義,確認人工智慧系統產業鏈之提供者及部署者有其相應之權利義務,間接擴大歐盟在人工智慧領域之管轄範圍,並對於人工智慧系統的定義縮小,確保傳統計算過程及單純軟體使用不會被無意中禁止。對於通用人工智慧基礎模型之部分僅初步達成應訂定相關監管,並對基礎模型之提供者應施加更重之執行義務。然由於涉及層面過廣,仍需業界、科學社群、民間及其他利害關係人討論準則之制定。 面對AI人工智慧之快速發展,各國在人工智慧之風險分級、資安監管、法律規範、資訊安全等議題持續被廣泛討論,財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境,將持續觀測各國法令動態,提出我國人工智慧規範之訂定方向及建議。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI,https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited December 25, 2023). [2]European Commission, Commission welcomes political agreement on Artificial Intelligence Act,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6473 (last visited December 25, 2023). [3]Artificial intelligence act,P5-7,https://superintelligenz.eu/wp-content/uploads/2023/07/EPRS_BRI2021698792_EN.pdf(last visited December 25, 2023). [4]GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2 (last visited December 25, 2023). [5]General purpose AI-consisting of models that “are trained on broad data at scale, are designed for generality of output, and can be adapted to a wide range of distinctive tasks”, GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2(last visited December 25, 2023).
日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」日本經濟產業省「促進再生能源關連制度改革小委員會(再生可能エネルギー導入促進関連制度改革小委員会)」於2016年2月5日公布了報告書,該報告書集結了自2015年9月以來,共計13次的討論整理,未來FIT制度改革方向,將以此為根基。 提出該報告的目的在於,達成最加能源構成方案(エネルギーミックス)之目標,於2030年導入22-24%之再生能源,冀望在最大限度導入再生能源,並與抑制國民負擔之間調合並存。 該報告提出五大修正制度方針,分別簡述如下: (一)針對未運行案件對應修正認證制度 (1) 進一步加強撤銷認證制度之報告徵收及聽證程序。 (2) 創設新認證制度,應確認該發電事業的實施可能性後,才得認定為FIT。 (二)促進長期安定發電的配套措施 (1) 事業者應做適當的檢查及維修、發電量定期報告,制定廢棄及回收等應遵守事項。若有違反情事,主管機關得發出改善命令或是取消認定資格。 (2) 確認並遵守所涉及之土地使用條例、公告認定資訊、提供地方政府建構計畫內容。 (三)導入成本效率 (1) 設定中長期之「收購價格」目標。 (2) 以Top Runner等方式決定具備「成本效率」之收購價格,亦即以最佳方式選擇。 (3) 賦課金減免制度為一個可持續的機制,同時透過活用賦課金以確保基金,並確認對象事業的節能方案及對國際競爭力的影響等(檢討減免率)。 (四)擴大導入開發週期長(リードタイムの長い)之電力 (1) 開發週期較長之電力,預先於數年前決定認證案件之收購價格。 (2) 進行環評期間減半(通常為3~4年)等必要規制改革。 (3) 於FIT認證前,得申請接續系統。 (4) 針對不同電力的挑戰檢討對應的支援方法 (五)擴大導入電力系統改革之優勢 (1) 基於「廣域系統整備計畫」,計畫性地推動整備廣域系統。 (2) 對應區域系統之限制,公告系統資訊以及建設費用之單價。此外,繼續活用投標邀請規則(入札募集ルール),共同負擔系統升級費用。 (3) FIT收購義務人由零售事業者轉換為輸配電事業者,並促進全國區域間電力調配(広域融通)之順暢性。收購後之電力,得經由交易市場外直接輸送予零售事業者。 (4) 整備再生能源事業者間公平之輸出控制規則(公平な出力制御ルール)。
美國司法部發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」之最終規則,以因應國家安全威脅美國司法部(Department of Justice, DOJ)於2025年1月8日發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」(Preventing Access to U.S. Sensitive Personal Data and Government-Related Data by Countries of Concern or Covered Persons)之最終規則。該規則旨在避免特定國家或個人獲取大量國民敏感個人資料及政府相關資料,以降低國安威脅。 最終規則指出,去識別化敏感個人資料若經大量蒐集,仍可能被重新識別,因此原則上禁止或限制任何美國人在知情的情況下,與受關注的國家或個人進行該等資料的大量交易。其將敏感個人資料定義為社會安全碼、精確地理位置、車輛遙測資訊(vehicle telemetry information)、基因組以及個人健康、財務資料或其他足資識別個人之資料,並定義禁止及限制交易的型態。同時,最終規則除設有若干豁免交易類型外,也定有一般及特別許可交易規定,並授權司法部得核發、修改或撤銷前述許可。一般許可交易的類型將由總檢察長另行公布;特別許可則由總檢察長依個案酌情例外核准。 該規則課予交易方持續報告(reporting)、盡職調查(due diligence)、稽核(audit)、紀錄留存(recordkeeping)等義務,並針對涉及政府相關資訊或美國國民大量敏感個人資訊之商業交易,例如投資、雇傭、資料仲介(data brokerage)及供應商契約,提出資安要求,以降低受關注國家或個人獲取該類特定資訊的風險。最後,該規則定有民事罰款(37萬美金以下)、刑事處罰(100萬美金以下或20年以下徒刑),並設立申訴之救濟措施。
美國提出壟斷威攝法案美國參議院在2019年7月23日,於第116屆國會中審查了兩次「壟斷威攝法案」(The Monopolization Deterrence Act),相當於台灣法案經過二讀。提出者是參議院司法委員會反托拉斯、競爭政策和消費者權益小組之成員,克洛布查爾,他認為聯邦執法人員發現非法壟斷行為之時,需要採取果斷行動以確保制止這種行為,但僅僅是禁制令不足以阻止這種非法行為的發生,尚需更好的立法。 本法將賦予司法部和聯邦貿易委員會權利,對壟斷犯罪尋求懲罰性罰款,其目的係為司法部和聯邦貿易委員會提供額外的執法工具,針對個別違規行為制訂補救措施,平衡其嚴重的犯行,並希冀能有效制止未來之非法行為。原法律規定個人違反最高可罰一百萬美元,企業最高可以罰一千萬美元,國會調查後認為原法律規定之罰款不足以阻止壟斷行為,因為獲利可能比罰款更多。 有關「壟斷威攝法案」之修正內容大略包含: 每個違反本條規定的人,必須負擔民事罰款,該罰款不大於個人上一年度在美國的總收入中的15%。從事非法行為之期間,所有交易、貿易行為收入的30%。 委員會針對以不正當方法競爭違反謝曼爾法案第二條的個人、合夥企業或公司,可以在美國地方法院提起民事訴訟,並對此種行為處以民事罰款。 任何個人、合夥企業或公司被發現違反了謝曼爾法案第二條,其民事罰款不大於個人、合夥企業、公司上一年度在美國的總收入的15%。從事非法行為之期間,與非法行為有關之商業活動中之個人、合夥企業或公司在美國之總收入的30%。 在聯合民事處罰準則中,有規範總檢察長和聯邦貿易委員會在計算民事罰款時,必須考慮之相關因素,有以下七項,其一,受影響的商業量;其二,違法行為的持續時間和嚴重性;其三,為隱瞞違法行為而採取或試圖採取之任何行動;其四,違法行為嚴重或明顯違法之程度;期五,是否將民事處罰與針對違法行為之其他救濟相結合,包括結構性救濟、行為條件、非法所得之歸還;其六,先前是否曾從事過相同或類似之反競爭行為;其七,是否違反先前之法令或法院命令該為之行為。