內閣官房副長官於2019年12月18日召集國土交通省、警察廳、經濟產業省、防衛省等相關主管機關,召開第9次「小型無人機相關府省廳聯絡會議」(小型無人機に関する関係府省庁連絡会議),並決議由內閣於2020年向國會提交《小型無人機於重要設施周邊地區上空飛行禁止法》(重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律,以下簡稱「小型無人機等飛行禁止法」)修正案,將重要國際機場及其周邊地區列為小型無人機的永久禁航區。
《小型無人機等飛行禁止法》之目的係禁止小型無人機於國家重要設施上空飛行,以防患於未然,並維護國政中樞機能和良好國際關係,以及確保公共安全。依該法第2條、第9條第1項之規定,小型無人機之禁航區域包含國會議事堂、內閣總理大臣官邸、其他國家重要設施等、外國領事館等、國防相關設施和核能電廠,以及設施周邊經指定之地區。
而在機場部分,為預防危險並確保大會能順利準備及營運,日本已透過《世界盃橄欖球賽特別措施法》(ラグビーW杯特措法)及《東京奧運暨帕運特別措施法》(東京五輪・パラリンピック特措法),將國土交通大臣指定之機場及其周圍300米地區增列為小型無人機禁航區,但僅為大會期間的暫時性措施。內閣考量小型無人機之飛行可能會影響機場功能運行,甚至對經濟帶來重大不良影響,欲透過《小型無人機等飛行禁止法》修正案,將該暫時性措施改為永久措施。
本文為「經濟部產業技術司科技專案成果」
日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。 本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。
英國公布合成生物學公眾對話報告,以避免早期爭議的產生今(2010)年5月,美國克雷格文特爾研究所宣布,成功完成首個由電腦設計之人造基因組控制,並具有自我繁殖功能的合成細胞,研究人員將其取名為辛西亞(Synthia),並發表於科學雜誌,此舉意味生物科技的發展,已經從生命複製階段步入生命創造階段。此次合成細胞的成功,引發先進國家政府方面的對經濟利益、管理及社會法制影響等方面的重視。美國總統歐巴馬便敦促生物倫理委員會對此發展進行密切觀察,評估此研究將之影響、利益和風險。 英國對於合成生物學發展的規範議題也十分關心,該國2009年開啟有關合成生物學的公眾對話(public dialogue),並於今年6月完成並公布報告。獲得的結論如下: 一、肯定合成生物學所帶來的機會: 英國民眾普遍認為合成生物學的應用將會帶來許多重要的機會,可協助解決當前社會所面臨的重大挑戰,例如氣候變遷、能源安全與重大疾病等。 二、關心合成生物學發展的不確定性: 由於合成生物學的發展充滿著不確定性,故當長期的負面影響尚未可知時,有些民眾反而因發展過於快速而覺得到沒有確定感。 三、期待國際規範形成: 英國民眾認為希望能有國際性的合成生物學規範與管理措施,尤其應針對合成生命物質在未受到管制而釋出於環境之生物安全議題,猶應有國際性的管理規範。 四、衡量科研人員動機: 英國民眾擔心,研究者好奇心的驅使,會使合成生物學發展過於快速,故應衡量其研究所帶來的廣泛影響。 五、強調科研人員之責任 負責資助的研究委員會應有清楚角色,促使科學家在此新興科技領域研究中,培養思考科學家責任之能力。 此次對話結果將會納入英國對合成生物學研究補助的法規政策,成為決定補助方式、項目與範圍的重要參考依據。這樣的作法是考量到,希望使合成生物學在健全的管理與法規下持續發展,預先減低過往生物科技發展導致民眾疑慮而致延滯發展的可能性,也更能將政府科研資助有效地投入有利於國家整體發展的領域中。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
加拿大安大略省通過修正健康資訊保護法加拿大安大略省議會於2016年5月三讀通過修正健康資訊保護法(Health Information Protection Act, HIPA)。該法案藉由一連串措施,包括增加隱私保護、問責制與提升透明度,以提高病人地位。 1.在符合指令定義內,將違反隱私之行為強制性地通報與資訊與隱私專員; 2.強化違反個人健康資訊保護法之起訴流程,刪除必須於犯罪發生之六個月內起訴之規定; 3.個人犯罪最高額罰款提升到50,000元至100,000元,組織則為250,000元至500,000元。 而健康資訊保護法也將更新照護品質資訊保護法(Quality of Care Information Protection Act, QCIPA),有助於提升透明度,以保持醫療系統的品質,更新內容包括: 1.確認病患有權得知其醫療相關資料; 2.釐清不得對關於受影響的病患與家屬保留重要事項之資訊與事實; 3.要求健康與長照部(Minister of Health and Long-Term Care)每五年定期審查照護品質資訊保護法。 安大略省亦正著手研究由專家委員會提出,所有關於提升照護品質資訊保護法所稱重大事故透明度之建議。 藉著透過該目標,將可提供病患更快的醫療,更好的家庭與社區照顧,安大略政府希望可以透過上開手段以保護病患隱私以及加強其資訊透明度。