澳洲政府發布「急診醫師使用我的健康紀錄指引」提供急診醫師規範遵循

  2019年2月澳洲政府依據「我的健康紀錄法」(My Health Records Act 2012),執行全國國民納入「我的健康紀錄系統」(My Health Record System)(下稱系統)之政策,有將近9成的國民被納入系統,為解決急診醫師在緊急救治時,需查看病患醫療資訊的需求;澳洲數位健康局(Australian Digital Health Agency, ADHA)於2019年11月發布了一項全國倡議的政策:急診醫師能使用我的健康紀錄系統,在急迫情形下即時做診斷。因此澳洲健康安全與品質委員會(Australian Commission on Safety and Quality in Health Care)與澳洲急診醫學院(Australasian College for Emergency Medicine, ACEM)共同訂定「急診醫師使用我的健康紀錄之指引」(Emergency Department Clinicians’ Guide to My Health Record)(下稱指引)提供急診科醫師參考,說明如下:

  原則上只有病患之家庭醫師或主治醫師才能進入系統查看病患的醫療資訊,其他未經同意的醫師不得隨意查看病患的醫療資訊,但若病患發生急救狀況時,則允許急診醫師得使用系統查看病患之醫療資訊,例如:使用藥物資訊、各醫師之醫療診斷書、照顧資訊、處方簽紀錄,病患用藥歷史、住院紀錄、家族病史、專家建議信(Specialist letters)、器官捐贈與預立醫療決定(Advance care plans)、病理診斷、病人自行輸入的資訊,例如過敏反應等,協助急診醫師能使用病患就醫紀錄迅速的做診斷;允許急診醫師得直接查看病患之醫療資訊,也解決急診醫師在救治時,無法即時與病患之家庭醫師聯繫問題。另外,系統之病歷電子化也為急診醫師帶來益處,例如:醫療資訊的合併,整合病患的就醫資料、減少不必要及重複的檢查,即時傳遞醫療資料等。此外,為了保障國民之資訊自主,醫師必須尊重病患的權利,例如病患得使用取消功能來刪除病歷資訊、限制特定醫療人員或醫療機構查看、限制查看資料的類型等。

  這項指引使急診醫師能更了解如何使用系統、在緊急救護時,得隨時能查病歷資料做出最佳的處置、系統化的便利性為急診醫師節省許多處理時間,並促進與提升醫療品質。

相關連結
相關附件
你可能會想參加
※ 澳洲政府發布「急診醫師使用我的健康紀錄指引」提供急診醫師規範遵循, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8389&no=64&tp=1 (最後瀏覽日:2025/12/20)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

中國大陸國務院揭示支持科技成果轉化政策措施

  中國大陸國務院於2016/年2月18日國務院常務會議中確認支持科技成果移轉轉化政策措施及促進科技與經濟深度融合。   依據該會議決議,為提升創新主體的積極性,將鼓勵國家設立之研究開發機構、高等院校以轉讓、授權或作價投資等方式,向企業或其他組織轉移科技成果,並適用以下政策: (1) 自主決定轉移其持有的科技成果,原則上不需審批或備案。鼓勵優先向中小微企業轉移成果。支援設立專業化技術轉移機構。(惟在境外實施方面,仍須依《科學技術進步法》第21條及《中國大陸國家科技重大專項知識產權管理暫行規定》第33條進行審批。) (2) 成果轉移收入全部留歸單位,主要用於獎勵科技人員和開展科研、成果轉化等工作。科技成果轉移和交易價格要按程式公示。 (3) 通過轉讓或許可取得的淨收入及作價投資獲得的股份或出資比例,應提取不低於50%用於獎勵,對研發和成果轉化作出主要貢獻人員的獎勵份額不低於獎勵總額的50%。科技人員在成果轉化中開展技術開發與服務等活動,可依法依規獲得獎勵。在履行盡職義務前提下,免除事業單位領導在科技成果定價中因成果轉化後續價值變化產生的決策責任。 (4) 科技人員可以按照規定在完成本職工作的情況下到企業兼職從事科技成果轉化活動,或在3年內保留人事關係離崗創業,開展成果轉化。離崗創業期間,科技人員承擔的國家科技計畫和基金專案原則上不得中止。鼓勵企業採取股權獎勵、股票期權、專案收益分紅等方式,激勵科技人員實施成果轉化。 (5) 將科技成果轉化情況納入研發機構和高校績效考評,加快向全國推廣國家自主創新示範區試點稅收優惠政策,探索完善支援單位和個人科技成果轉化的財稅措施。更好發揮科技創新對穩增長、調結構、惠民生的支撐和促進作用。

歐盟針對單一專利制度達成協議

  歷經多年的討論與僵持後,歐盟各國領袖於2012年6月29日宣布同意建立歐盟單一專利制度,並決定將單一專利法院分別設置於巴黎、倫敦與慕尼黑三個城市。   專利法院的設置地點一直為建立歐盟單一專利制度的最後爭議點,包括英國、德國與法國一直積極爭取單一專利法院設立在他們國家,最後於6月29日終於達成妥協,將單一專利法院分成三個地點:第一審法院中央部門之主要位置將設立於法國巴黎,而法院的第一任院長也將會由法國人擔任,英國倫敦及德國慕尼黑也將分別設立部門,以因應專利訴訟案件的特殊性質,英國倫敦將負責處理跟化學藥學生命科學相關之專利案件,德國慕尼黑則負責處理跟機械工程相關之專利案件。而歐盟單一專利的核發將由歐洲專利局(European Patent Office)負責。   單一專利制度協議僅有25個歐盟國家同意,西班牙及義大利目前選擇不加入,原因是這兩個國家不滿西班牙文及義大利文都沒有被納入為單一專利制度之官方語言,只有法文、德文及英文被訂為單一專利制度之官方語言,西班牙及義大利認為這樣的安排將為位於法國德國及英國的企業帶來不公平的優勢。   此項協議現在將進入歐盟議會進行表決,預計於2014年就可以開始核發歐盟單一專利。

英國電信市場競爭服務達到700萬線路

  英國的寬頻市場競爭在透過執行網路元件細分化(LLU)政策後,英國電信公司(BT)的對手競爭公司如Sky或TalkTalk,利用BT擁有的電話銅線,提供競爭通訊服務的線路數已達到700萬。這顯示英國電信管制機關Ofcom的細分化政策(LLU)已見成效。   這項政策係在2005年9月,由BT向Ofcom做出具有法律效力的承諾,Ofcom要求BT分拆成立一個新公司,稱為Openreach,負責向競爭對手提供線路出租的批發服務。Openreach是基於功能分離之實體,提供BT和其競爭對手完全一樣的交易條件,如契約條款、價格、系統和商業關係。   政策實施初期,英國電信市場僅有約12.3萬條細分化線路。多數人只能選擇BT作為寬頻及固網電話服務的供應商。   根據Ofcom的最新研究,目前英國有超過1900萬條寬頻線路。其中70%以上是由BT以外的其他公司提供服務,其中許多服務建立在BT的細分化網路元件的基礎上。   現有超過30家不同的公司,為家庭和小型企業提供非捆綁式(unbundled)服務。這有助於提升寬頻網路普及、降低固網電話的價格。與2005年9月相較,當時僅37%的家庭和小型企業有寬頻網路,現在這個數字是71%。   競爭對消費者而言,也帶來較低的費用。根據Ofcom的研究,在2005年最後一季時,消費者每月平均為寬頻網路服務支出約23.30英鎊。今天,他們為相同的服務每月付出大約13.31英鎊。   因此由零售價格、寬頻普及、競爭業者數量來看,英國的寬頻市場競爭已經達到一個重要的里程碑。

TOP