美國白宮於2018年3月發布〈總統管理方案(President’s Management Agenda)〉,其中發展「聯邦資料戰略(Federal Data Strategy)」,將資料作為戰略資產,藉以發展經濟、提高聯邦政府效能、促進監督與透明度,為方案中重要之工作目標之一。「聯邦資料戰略」之架構上主要包括四個組成部分,以指導聯邦資料之管理和使用:1.使命宣言:闡明戰略之意圖與核心目的;2.原則:有十大恆定原則對於機關進行指導;3.實作規範:有四十項實作規範指導機關如何利用資料之價值;4.年度行動計畫:以可衡量之活動來實踐這些實作規範。
於2019年12月23日,〈2020年行動計畫〉之最終版正式發布,其將建立堅實之基礎,在未來十年內支持戰略之實踐。詳言之,〈2020年行動計畫〉之內涵主要包含三大部分與二十個行動:
〈2020年行動計畫〉確定機關之初步行動,其對建立流程、建立能力、調整現有工作以更好地將資料作為戰略資產至關重要。未來之年度行動計畫將會在〈2020年行動計畫〉之基礎上進一步發展出針對聯邦資料管理之協調方案。
本文為「經濟部產業技術司科技專案成果」
今年7月,美國國會議員Issa提出了《2024年訴訟透明法案》(H.R. 9922, the Litigation Transparency Act of 2024,下稱《訴訟透明法案》),要求當事人揭露民事訴訟中所取得之金融支援的來源,如商業貸款機構等,以提高訴訟透明度並降低濫訴之情形,惟此提案恐導致美國新創及中小企業更難成功起訴竊取其專屬技術之大企業。 近年來,許多大型科技公司從較小的競爭對手竊取其專屬技術,然而僅有少數案例成功取得賠償金,如:伊利諾州地方法院要求Amazon向軟體公司Kove IO支付5.25億美元的賠償金等。這是由於新創及中小企業縱有證據證明其智慧財產權被盜,在訴訟中多面臨沒有足夠資力與大型科技公司抗衡之窘境,因此往往被迫接受遠低於其所受損失之和解金。透過這種方式,大型科技公司能掌握技術並支付低於取得該技術授權所需之成本,因此被稱之為「有效侵權(efficient infringement)」。 新創及中小企業近期透過與第三方金融資助者協議共享訴訟取得之賠償等方式,降低其進入訴訟程序的經濟門檻,以對抗大型科技公司所採取之「有效侵權」。然而最近一系列案例顯示,中國大陸所支持的第三方金融資助者助長了針對美國企業之智財訴訟,引發了國家安全問題,故立法者為降低營業秘密被外國競爭對手取得之風險、避免無意義之訴訟被廣泛提起,要求當事人揭露其於民事訴訟中所取得之金融支援來源。若《訴訟透明法案》通過,原告所採取之法律策略將可能外洩,而第三方金融資助者亦將受到各方之抨擊,進而導致新創及中小企業在訴訟中更難取得金融支援。 綜上所述,若要降低訴訟之可能性,新創及中小企業須強化其對於專屬技術之保護,從根本減少專屬技術洩露之風險,以避免訴訟發生或進入後端訴訟。有鑑於新創及中小企業與大企業相比,在智財保護觀念上更接近學研單位,且對於營業秘密之管理多未臻完備,因此為確保其能有效落實對營業秘密之管控,建議新創及中小企業可參考智慧局所發布之《學研機構營業秘密管理實作要領》,量身訂作符合自身需求的營業秘密管理制度,並循序完善相應之營業秘密管理措施,以降低專屬技術被竊取的風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。
物聯網時代的資料保護防線-以歐盟GDPR為中心