目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三:
然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。
本文為「經濟部產業技術司科技專案成果」
世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
美國21世紀醫療法最終規則下之資訊封鎖條文生效,患者健康資料進用權利獲保障美國國家衛生資訊科技協調辦公室(The Office of the National Coordination for Health Information Technology, ONC)於2020年5月公告的「資訊封鎖最終規則(Information Blocking Final Rule)」,於2021年4月5日正式生效。 ONC依21世紀醫療法(21st Century Cure Act)授權,制定有「21世紀醫療法:協同操作性、資訊封鎖與ONC健康IT認證計畫」(21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification Program)最終規則,包含各面向關於新興醫療IT技術之規範,其中特別針對資訊封鎖的相關條文,又稱為「資訊封鎖最終規則」。 21世紀醫療法為了確保病患資料近用權利,在法條中明定禁止資訊封鎖行為。「資訊封鎖」,根據資訊封鎖最終規則的定義,是指健康照護業者或健康資訊技術廠商,包括受認證的健康資訊技術(health IT)、健康資料交換 (health information exchange)或健康資料網絡(health information network),在欠缺法律授權或非屬美國公共衛生服務部(Health and Human Service, HHS)認定合理且必要的情況下,所為之干擾、防止或嚴重阻礙電子健康資料(Electronic Health Information, EHI)獲取、交換及使用行為。但以下八種情況,不適用資訊封鎖最終規則:預防傷害(Preventing Harm)、隱私(Privacy)、安全(Security)、不可行性(Infeasibility) 健康IT性能(Health IT Performance)、內容與方式(Content and Manner)、費用(Fees)、授權(Licensing)。 21世紀醫療法在資訊封鎖章節中規定,資訊封鎖相關條文在資訊封鎖例外類型被定義出來後,始生效力。換言之,在資訊封鎖最終規則生效後,病患將有權依法近用其電子健康資料,資料持有者原則上不得拒絕。值得注意的是,資訊封鎖最終規則生效後至2022年10月6日止,適用資訊封鎖條文的電子健康資料範圍,係以美國協同操作核心資料(United States Core Data for Interoperability, USCDI)中所定義之電子健康資料為準。USCDI,是由ONC主導建立的一套資料標準格式,以統一健康資料交換格式,促進資料流通。2022年10月6日起,資訊封鎖最終規則所指的電子健康資料範圍將不僅只局限於USCDI標準所定義之電子健康資料,將擴及健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)所定義的所有電子健康資料。
何謂「阿西洛馬人工智慧原則」?所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。 該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。 其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。
英國資訊專員辦公室強調歐盟資訊保護改革成本充滿不確定性英國資訊專員辦公室進行獨立調查時發現, 1、40%的企業沒有充分認識提出的主要條文; 2、87%的企業無法估計公司中業務為因應改革可能支出的成本; 3、82%的受訪者是無法量化其當前資訊保護的開支; 4、在少數的大型組織觀測調查中發現,估計資訊保護的平均花費時常會受到扭曲; 5、當公司擁有超過250名員工或處理超過10萬筆個資紀錄時,絕大多數都已經聘請資訊保護專人; 6、重點業別包括服務業、金融保險業以及公共管理等,需要針對資訊管理有所計畫。 而調查報告在2013年5月14日於柏林舉辦的第三次歐洲資訊保護日會議中提出,資訊專員Christopher Graham表示「必須說,有少數人不同意為面臨21世紀的挑戰,而需要修訂歐洲資訊保護法。但真正進步之實現在於,今日或將來的法律面,針對個人資料有更好的體現。關鍵點在於確實地衡平理論面與執行面中資訊保護權利之平衡點。」 「已經談論過很多關於『什麼是最好的商業』,但這必須基於合法證據。此次的改革的結果會是非常重要的,我們希望敦促歐盟委員會可以考慮並將重點放在制定法律,為消費者提供真正的保障。」 「同樣的,企業和其他的利益相關者必須參與具建設性的義務與隱私權權利的重要性改革,在此過程中仍然可以受到影響」