台日為促進5G導入創設優惠稅收待遇制度

  日本自民黨(目前執政黨)稅制調查會於去(2019)年12月12日公布「令和2年度稅制改正大綱」,並於同年12月20日經閣議決定,創設促進5G 導入稅制,決定對正在開發通訊網絡的行動通訊廠商,給予優惠稅收待遇。預計於今(2020)年通過「促進特定高端資訊通信等系統普及相關法律(暫定)」,於該新法施行日至2022年3月31日期間,受認定為「導入事業者(暫定)」之法人,導入符合「認定導入計畫(暫定)」之5G系統,取得5G系統設備並將其用於日本國內事業時,可選擇特別抵免取得價格的30%,或稅額扣除取得價格的15%,扣除上限額為法人稅額的20%。

  我國於去(2019)年10月24日發布實施「公司或有限合夥事業投資智慧機械或第五代行動通訊系統抵減辦法」,亦規定有國內企業導入5G系統之抵減辦法,適用對象為同一課稅年度支出總金額100萬元以上,不逾10億元為限,可選擇支出金額5%抵減當年度應納營所稅額,或3年內支出金額3%抵減各年度應納營所稅額,抵減上限為當年度應納營所稅額30%,合併適用其他投資抵減時,當年度應納營所稅額50%。

  我國與日本均可望透過優惠稅收待遇制度,促進5G 導入。隨著在地化5G的導入,預計可利用於工廠生產線自動控制和農產品效率化生育管理等智慧化資通訊系統,以促進智慧工廠或智慧農業的落地普及。

相關連結
相關附件
※ 台日為促進5G導入創設優惠稅收待遇制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8395&no=57&tp=1 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
歐盟智慧財產局運用科技強化智財保護,正式啟動產品的區塊鏈物流認證計畫(EBSI-ELSA)

歐盟智慧財產局(EUIPO)為打擊仿冒,保護歐盟消費者及智慧財產權人,於2023年5月31日宣布正式啟動產品的區塊鏈物流認證計畫(European Blockchain Services Infrastructure - European Logistics Services Authentication, 簡稱EBSI-ELSA)。 根據EUIPO與經濟合作暨發展組織(OECD)於2021年發布的研究指出,全球仿冒產品的貿易額高達4120億歐元,占全球貿易總額的2.5%;每年輸入歐盟的產品約有6%是仿冒產品,嚴重影響歐盟的經濟發展、消費者的健康及安全、智慧財產權人(歐盟品牌企業)的權益。 從2019年至今,EUIPO一直努力研擬透過區塊鏈技術保護智慧財產的具體方案。2022年底,EUIPO與4個不同產業的品牌企業(包含汽車業、電子業、醫藥業、服飾業)、物流業者、荷蘭海關進行一個合作的試驗計畫,內容為透過區塊鏈技術追蹤產品於海外製造後,運送至歐盟銷售的歷程軌跡,以達到認證產品為智慧財產權人生產的目標。該試驗計畫於2023年5月完成概念驗證(proof of concept)。 本計畫結合區塊鏈服務基礎設施(European Blockchain Services Infrastructure, EBSI)及數位分身(digital twins)的概念,於生產、運送、海關查驗、配送至消費者的各階段中,在產品上嵌入一個含有序列化代碼(serialization code)的標籤,該代碼必須經產品所屬智慧財產權人的可驗證憑證(Verifiable Credentials, VCs)認證,結合歐盟智慧財產權相關資料庫的資料,以確認產品與其數位分身的連結。 EUIPO將於2023年底前,正式建置一個開源的區塊鏈認證平台,介接執法機構的風險分析系統,以及商標資料庫(TM View)、設計資料庫(Design View)、歐盟執法入口網(IP Enforcement Portal, IPEP)、歐盟區塊鏈智慧財產註冊系統(IP Register in Blockchain),鼓勵供應鏈、物流鏈中的參與者於此平台上交換資料,以更有效率的方式達到認證產品來源真實性的目標。 EUIPO積極運用區塊鏈科技強化歐盟智慧財產的保護,本計畫除可避免消費者買到仿冒產品外,歐盟的品牌企業未來可於相關智財侵權訴訟中,提出區塊鏈紀錄作為證據,有效主張權益。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

論專利公開前機密管理之重要性

美國德州第一上訴法院於2023年8月的一項裁決強調了以下重點—即便企業的智慧財產權戰略是圍繞在專利申請而建立的,仍應證明其有在專利公開前採取到位的營業秘密保護政策。 在FMC Technologies, Inc. v. Richard Murphy and Dril-Quip, Inc.一案中,FMC是一家石油與天然氣公司,而Murphy是其前首席工程師,可接觸FMC公司重要研發技術。兩者的關係於2018年惡化,同年12月FMC公司提出了ITW系統(orientation-free subsea tree system)的專利申請,Murphy則於隔年5月收到Dril-Quip公司的錄用通知。離職時Murphy有簽署一份協議,承認其有義務為FMC公司持有的專屬資訊保密,並已將所有與工作相關的資訊歸還。 Murphy於Dril-Quip公司被任命負責開發與ITW系統幾乎相同的競爭產品。2020年5月,Dril-Quip公司於海上技術會議發布其下一代海底採油系統(VXTe Subsea Tree)的相關內容,並宣布將商業化生產。據此,FMC公司控訴Murphy使用其花費了多年時間和數百萬美元開發的營業秘密資訊。Dril-Quip公司則辯稱FMC公司所謂的營業秘密可輕易透過一般管道查明,且其未採取合理的努力來防止營業秘密外洩。 在判斷FMC公司是否有採取合理保密措施時,德州第一上訴法院針對其於專利尚未公開及等待核准審定期間是否有採取合理的努力進行審查,並發現下列情形: 1. FMC公司並未根據有存取該機密資訊需求的人設定權限,反而將其工程資料庫開放給所有公司內部的工程師,讓他們都可以遠端存取相關資料。 2. FMC公司並未禁止員工將公司的機密文件複製到外部伺服器上。 據此,德州第一上訴法院認定FMC公司於專利公開前未妥善保護其營業秘密,並認為被告Murphy未不當使用其營業秘密。最終,德州第一上訴法院判被告Murphy勝訴。 由上述裁決可以發現,企業在專利公開前仍應採取營業秘密保護政策,包括:(1)對機密資訊存取的權限控管、(2)規範對機密資訊的使用程序、規定等,以避免在訴訟中失利。關於前述之管理措施,可以參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》,以了解如何降低自身營業秘密外洩之風險,並提升競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

暴雪公司告《刀塔傳奇》遭駁回,修正訴狀後再提告

  2015年3月,暴雪公司(BLizzard Entertainment)在官網上公開宣稱,手機遊戲《刀塔傳奇》並未經過其授權,而其角色場景均涉嫌抄襲「魔獸爭霸」與「魔獸世界」多項重要角色,其後在美國、大陸台灣等地對《刀塔傳奇》開發商莉莉斯公司提出告訴。而 Courthouse News Service近來指出,美國地方法院於2015年12月17日駁回暴風公司對莉莉斯公司的訴訟。   美國的著作權法不保護虛擬角色,但仍有例外。依據上訴法院在1978年的Halicki Films訴Sanderson Sales and Marketing一案標準,若該虛擬角色具有特別特色(especially distinctive)則可例外予以保護,而特別特色需要有相當證據證明設計者為原告且具有獨特的特徵,方得予以主張。美國地院目前認為而暴雪公司目前提出角色姓名、服裝、武器、背景設定等證據資料,尚無法說明暴雪公司所創角色具有獨特性,故予以駁回。而暴雪公司則於12月22日發出正式聲明,認為現階段並非侵權主張不成立,而是訴訟資料不齊全,並著手提交更詳盡的證據清單,暴雪公司會於修正訴狀後,再提起訴訟。   雖然暴雪公司在美國對莉莉斯訴訟遭受駁回,但其在中國大陸對《刀塔傳奇》代理商與莉莉斯公司所提告訴,已讓蘋果公司(Apple, Inc.)讓《刀塔傳奇》從App store下架;而美國法院判決是否使蘋果公司在中國大陸重新上架《刀塔傳奇》,則有待觀察。

TOP