日本公正取引委員會啟動以交易優勢不當攫取新興智慧財產之實況調查

  日本公正取引委員會(下稱公取委,其性質等同於我國公平交易委員會)在2019年12月11日的定期記者會上表示,由於近年出現許多關於「智慧財產及knowhow保護不足」的聲音,因此將針對大型企業在與新創、新興企業進行共同合作或研究時,是否有濫用優勢地位不當掠取智慧財產權及專業知識技能(knowhow)的情形,啟動實況調查。

  公取委將以書面方式,針對日本國內約1萬家創業10年以內的IT製造新創產業與大企業間交易之實況進行調查。相關報導整理了以下幾種常見的問題交易型態:

  1. 獨占智慧財產:(1)契約約定大型企業無須經新興企業許可,即可逕自申請專利;(2)共同研究成果全歸大型企業所有;(3)要求無限制的無償授權。
  2. 限制與他人合作:(1)長時間禁止新興企業與其他業界合作;(2)相關專利遭到大企業所限制,導致事業無法拓展。
  3. 強勢締約:(1)大型企業對於契約的意思決定過於緩慢;(2)直接交付簽訂好的紙本契約,並告知不得變更契約內容。

  公取委表示,因為新興企業具有開放式創新的價值,在與大型企業進行合作時,對於國家產業發展及競爭力的提升,能發揮很大的貢獻。因此藉由實態調查,確保建構出一個自由、公平的良性競爭環境,並預計在2020年依據調查結果,擬定相關指引或方針。

相關連結
※ 日本公正取引委員會啟動以交易優勢不當攫取新興智慧財產之實況調查, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8404&no=55&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
Serenex控訴員工竊取癌症新藥商業機密資料

  美國公司Serenex,指控兩位離職的舊員工,竊取實驗用癌症藥物,並賣給中國公司。Serenex控訴先前聘僱的化學家黃雲生是國際商業間諜,黃雲生偷竊Serenex的商業機密,並用偷來的資料來提供給海外尋找專利的公司。員工竊取機密已經是個日趨嚴重的問題,尤其是對全球型的企業,以及智慧財產為主的公司。   Serenex擁有30個員工,目前正進行實驗性癌症藥物的人體測試。根據報告Serenex自2001年設立後,所募得的風險資本已從2千6百萬美元提升至8千1百萬美元。為此,Serenex在威克高等法院提起訴訟,同時也將北京國藥龍立科技公司、基爾生物科技公司以及負責人Tongxiang Zhang列為被告。   Serenex的律師Jonathan Sasser表示,Serenex以提出訴訟的方式來保護他們的產品,並且希望調查是被百分之百確信,沒有人會去提出偽造的主張,並在起訴書上陳述,黃雲生在竊取機密後,Serenex於二月時將他解雇,但是黃雲生的律師Walter Schmidlin抗辯說明黃雲生自願離職,並且否認有做任何不法情事。Schmidlin同時表示Serenex並不能提出任何證據證明黃雲生拿了商業機密資料。

簡介日本「u-Japan政策」

經濟部技術處研究機構智慧財產管理制度評鑑與台灣智慧財產管理規範(TIPS)驗證內容比較

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

TOP