日本公正取引委員會啟動以交易優勢不當攫取新興智慧財產之實況調查

  日本公正取引委員會(下稱公取委,其性質等同於我國公平交易委員會)在2019年12月11日的定期記者會上表示,由於近年出現許多關於「智慧財產及knowhow保護不足」的聲音,因此將針對大型企業在與新創、新興企業進行共同合作或研究時,是否有濫用優勢地位不當掠取智慧財產權及專業知識技能(knowhow)的情形,啟動實況調查。

  公取委將以書面方式,針對日本國內約1萬家創業10年以內的IT製造新創產業與大企業間交易之實況進行調查。相關報導整理了以下幾種常見的問題交易型態:

  1. 獨占智慧財產:(1)契約約定大型企業無須經新興企業許可,即可逕自申請專利;(2)共同研究成果全歸大型企業所有;(3)要求無限制的無償授權。
  2. 限制與他人合作:(1)長時間禁止新興企業與其他業界合作;(2)相關專利遭到大企業所限制,導致事業無法拓展。
  3. 強勢締約:(1)大型企業對於契約的意思決定過於緩慢;(2)直接交付簽訂好的紙本契約,並告知不得變更契約內容。

  公取委表示,因為新興企業具有開放式創新的價值,在與大型企業進行合作時,對於國家產業發展及競爭力的提升,能發揮很大的貢獻。因此藉由實態調查,確保建構出一個自由、公平的良性競爭環境,並預計在2020年依據調查結果,擬定相關指引或方針。

相關連結
※ 日本公正取引委員會啟動以交易優勢不當攫取新興智慧財產之實況調查, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8404&no=55&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國政府於2015年10月公告美國創新戰略最新版本

  美國創新戰略(A Strategy for American Innovation)於2009年9月首次提出,後於2011年2月配合時事及產業發展增補內容。隨著政策的逐步推行,美國國家經濟委員會及白宮科技政策辦公室於2015年10月公布最新版本之美國創新戰略,在原有的框架增補更多內容成為六大重要施政要項,在策略佈局上又大致可分為創新資源整合的三大創新基礎以及三大策略發展方向,前者包括:(1)投資創新基石;(2)刺激私部門進行創新活動;(3)營造一個創新者國度。後者的三大策略發展方向則包括國家產業重要優先發展領域的技術突破,其影響意味著確定重點投資領域能夠取得變革性結果,以滿足國家和世界所即將面臨的社會議題挑戰。其中諸如精準醫療(precise medicine)、加速發展新型神經技術、推動衛生保健的突破性創新、採用先進車輛減少死亡事故、建設智慧城市、推動再生能源技術提高能源效率、開發先進教育技術、發展太空科技等。   其次,係藉由投資未來產業,建設包容性創新經濟,加強美國先進制造的領先地位,創造工作機會和經濟的持續成長。最後,借助於人才、創新思維及技術工具的適當組合,建設創新型政府,為民眾提供更好的行政服務。

日本〈塑膠資源循環戰略〉及新發展

  日本環境省因應海洋垃圾、全球暖化等課題於2019年5月31日發表〈塑膠資源循環戰略〉(プラスチック資源循環戦略),在重點戰略之一的減量(Reduce)方面,提出「塑膠袋收費制」措施,擬於2020年7月1日正式上路,經濟產業省則從同年1月6日開始設置可服務企業與消費者的諮詢窗口,也將與相關主管機關合作,致力於塑膠袋收費制內容之公告說明及自行攜帶購物袋之宣導等減少一次性塑膠製容器包裝及產品的使用,並透過尋找其他替代的容器包裝及產品等方式,達到一次性塑膠排放量在2030年前減少25%之目標。   因此經濟產業省產業構造審議會下的塑膠袋收費制檢討工作小組,及環境省中央環境審議會循環型社會部會下的塑膠袋收費制小委員會,自2019年9月至同年12月間召開4次聯合會議,並經過公眾意見程序後,修正《容器包裝再生利用法》(容器包装リサイクル法)的相關省令,並公布〈塑膠製購物袋收費制實施指導方針〉(プラスチック製買物袋有料化実施ガイドライン),供各零售業者參考,以確保塑膠袋收費制的順利施行。

保護、分級與言論(上)

TOP