美國白宮與中國大陸國務院,於2020年1月15日簽訂第一階段經貿協議,關注智財及技轉議題並提出解決方案。協議包括前言、智慧財產權、技術轉讓、糧食與農產品貿易、金融服務、經濟政策與匯率和透明度、擴大貿易、雙邊評估和爭端解決、最終條款等九個章節。協議強調應遵守國際條約,為世界貿易發展作出貢獻並促進國際合作以符合美中雙方利益;其中,雙方針對中國大陸現有及未來關於智慧財產權及貿易投資技術轉讓問題,提出解決方案如下:
一、提升智慧財產權保障
中國大陸作為全球主要技術供應方,必須建立並實施全面的智財權保護與執法體系,發展新創企業以促進高質量的經濟成長;並將營業秘密保護視為優化商業環境的核心要素,有效防止資訊遭竊取。藥品專利部分,為促進製藥領域的創新合作並滿足患者需求,美中雙方應提供藥品專利及非公開試驗或上市許可申請提交之相關資料;擬定專利有效期限延長方案。另外,為促進電子商務發展,美中應加強合作共同打擊電商市場中的侵權及偽造行為,阻止盜版產品的製造與銷售。確保產品地理標示保護,符合公正透明程序;加強商標權保障,防止惡意註冊商標;強化智財權的司法與行政程序等。美中雙方應根據本協議,提供立法機關法律修正建議,確保能充分履行本協議之要求。
二、改善強制技術轉讓
為確保美中雙方進行科技合作研發與企業市場准入,避免企業間因併購、合資及投資交易導致技術外流,中國大陸應改善強制技術轉讓問題;特別應加強美中雙方在關鍵技術問題上的相互信任與合作,保護智慧財產權、促進貿易投資,以解決中國大陸長期存在的結構性問題,包括提升行政程序公正透明度、避免政府過度介入民間企業、加強外資敏感資訊保障等。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於去年 9月公佈了新式樣保護指令修正建議案,針對現行零組件新式樣保護的現況加以調整,以增強歐盟境內零件市場的競爭力;英國政府為此亦針對指令之修正建議案展開諮詢程序。 依據現行歐盟新式樣保護指令,所謂新式樣係指「物品可見之外觀」 (visible appearance of an object),且不包含技術特徵在內。藉由新式樣保護制度,保障權利人投資能有一定之回饋,也可激發更多新式樣的設計產生。 在前述制度設計下,任何複合性產品 (如汽車、家電製品)之銷售已為新式樣權利人帶來經濟上的利得。但是當前述商品故障或毀損時,原新式樣權利人是否可主張對於修復產品所需之零組件(spare parts)亦能享有獨占權?由於現行新式樣保護指令中第14條規定零件必須能夠修復該產品以「恢復該產品原有之外觀」,因此新式樣保護亦間接導致原權利人對於修護配件市場之壟斷。 歐盟新式樣保護指令在制定當時,對於「零配件」之保護議題,曾引發會員國間極大爭議,因此現行第 14條予以折衷處理,亦即允許各會員國在國內法放寬市場競爭,但是對於任何減少市場競爭之立法則不允許。 英國在此議題上採取寬鬆之立場,因此,英國境內有著相當成熟且蓬勃的修護配件市場,也提供消費者更高品質且價格更優惠的選擇。因此,即便歐盟新式樣保護修正後,對英國境內之衝擊也很有限。
加州立法機關提出2020年加州消費者隱私法修正案,擴大對未成年消費者個人資料之保護2024年1月29日,加州立法機關提出2020年加州消費者隱私法(California Consumer Privacy Act of 2020)之修正案,限制企業出售、分享、使用及揭露18歲以下消費者的個人資料。 2020年加州消費者隱私法旨在保護消費者之個人資料相關權利。依現行條文,企業向第三方出售、分享消費者個資前,應向消費者發出通知。而消費者有權拒絕出售、分享其個資,即便消費者曾經同意,亦有權隨時要求企業停止出售、分享行為。現行條文尚禁止企業在明知消費者未滿16歲的情況下,出售或分享消費者個資。除非年滿13歲消費者本人授權,或未滿13歲消費者父母授權,企業方可為之。 然該法修正案調整了前述條文,改為禁止企業在明知消費者未滿18歲的情況下,出售或分享消費者個資,除非企業取得年滿13歲消費者本人之授權,或取得13歲以下消費者父母之授權。 加州消費者隱私法修正案亦針對未成年人個資的使用與揭露增設限制。依現行條文,消費者有權限制企業只能在提供商品、服務的必要範圍內使用其敏感個資。若企業欲對敏感個資為原定目的外之使用或揭露、或敏感個資可能被用於或揭露予第三方,企業應向消費者發出通知。而消費者有權限制或拒絕企業之使用、揭露行為。而後該法修正案在同條增加未成年人個資使用、揭露相關規範,規範企業不得使用、揭露18歲以下消費者個資。除非年滿13歲消費者本人同意,或是未滿13歲消費者父母同意企業為之。 若修正案通過,再配合現行條文於行政執行(Administrative Enforcement)章節之處罰規定,將能有效擴大該法對未成年人的保護。該修正案亦以條文要求加州隱私保護局(California Privacy Protection Agency)在2025年7月1日前,廣泛徵求公眾意見並調整相應法規,以進一步實現該法目的。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
日本公布「資料與競爭政策檢討會報告書」並探討資料收集利用違反《獨占禁止法》行為近年來,受到物聯網和人工智慧技術高度發展影響,大數據的重要性逐漸提昇。為避免資料不當收集和資料被不當佔據等可能妨礙競爭之行為,以利業者透過資料收集、累積和分析等方式,創造出新的產業價值,日本公平交易委員會於競爭政策研究中心設置「資料與競爭政策檢討會」,自2017年1月至6月間舉辦數次檢討會,並於2017年6月6日公布《資料與競爭政策檢討會報告書》。該書一共5章,內容為第1章檢討背景,第2章回顧資料環境變化與利用現狀,第3章檢討現今競爭政策及《獨占禁止法》,第4章資料收集、利用相關行為,以及第5章企業結合審查等與資料利用相關之事項。 報告書指出,業者不當收集資料和不當佔據資料等行為,均有適用《獨占禁止法》之可能。前者係指具有優勢地位的業者,利用關係要求有業務往來的企業提供資料等行為,如原本只需要性別和年齡資訊,卻額外要求對方提供住所、電話等訊息;後者則係指業者利用不正當方法與顧客聯繫,排除其他競爭者等行為,如排他性交易、拒絕交易、差別待遇等。