歐盟執委會於2020年1月8日發布《非歐盟國家智財權保護與執法成效報告》(Report on the protection and enforcement of intellectual property rights in third countries)。該報告自2006年起,每兩年出版一次,主要目的為確定特定非歐盟國家中智財權之保護與執法狀況,並列出每兩年的「優先關注國」(priority countries)清單。報告中亦說明,所謂「優先關注國」是對歐盟智財利益造成最大侵害的國家,而非指全球中智財保護狀況最有問題的國家。
本次報告臚列的國家中,中國為最需關注的第一級國家;第二級為印度、印尼、俄羅斯等;第三級則是阿根廷、巴西、馬來西亞、泰國、沙烏地阿拉伯等國。報告提到中國是歐盟境內仿冒品與盜版貨物的主要來源。在歐盟海關扣押的仿冒品與盜版貨物中,有百分之八十以上來自中國和香港。第二類優先國家,其智財保護與執法存在系統性問題,且問題解決上進度緩慢。而第三類優先國家智財領域表現上也有類似問題,僅在嚴重性和數量低於第二級優先國家。其中,沙烏地阿拉伯為今年新增為優先關注國家,研究報告指出該國常被作為中轉國家,傳輸歐盟境內仿冒與盜版貨物。
報告中亦提到上述國家共同問題,包含:
本文為「經濟部產業技術司科技專案成果」
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國FDA為因應藥品汙染事故公告四項製藥新指導原則美國食品藥物管理局(the United States Food and Drug Administration,以下簡稱FDA)於2015年2月13日公告四項與藥品製造有關之指導原則(guidance)作為補充相關政策執行之依據,主要涉及藥品製程中,藥品安全不良事件回報機制、尚未經許可之生技產品的處理模式、藥品重新包裝,以及自願登記制度中外包設施之認定應進行的程序與要求。 該四項指導原則係源於FDA依據2013年立法通過之藥物品質與安全法(The Drug Quality and Security Act,以下簡稱DQSA)所制定之最新指導原則。因2012年位於麻州的新英格蘭藥物化合中心(The New England Compounding Center),生產類固醇注射藥劑卻遭到汙染,爆發致命的黴菌腦膜炎傳染事故,故美國國會制定DQSA,以避免相同事故再次發生。DQSA要求建立自願登記制度(system of voluntary registration),倘若製藥廠自願同意FDA之監督,成為所謂的外包設施(outsourcing facilities)。作為回饋,FDA即可建議特定醫院向該製藥廠購買藥品。 而本次四項指導原則之內容,其一主要涉及外包設施進行藥物安全不良事件回報之相關規定,要求製藥廠必須回報所有無法預見且嚴重的藥物安全不良事件。在不良事件報告中必須呈現四項資訊,其中包括患者、不良事件首名發現者、所述可疑藥物以及不良事件的類型。同時,禁止藥品在上市時將這些不良事件標示為潛在副作用。第二份指導原則對於尚未經許可的生技產品,規定可進行混合,稀釋或重新包裝之方法;並排除適用某些類型的產品,如細胞療法和疫苗等。第三份指導原則涉及重新包裝之規定,內容包括包裝地點以及如何進行產品的重新包裝、監督、銷售和分發等其他相關事項。而第四份指導原則規範那些類型之藥品製造實體應登記為外包設施。為此,FDA亦指出聯邦食品藥物和化妝品法(the Federal Food Drug & Cosmetic Act)之規定裡,已經要求製造商從事無菌藥品生產時,必須將法規針對外包設施之要求一併納入考量。
新版個資法與個資保護管理制度新版個資法與個資保護管理制度 科技法律研究所 2013年4月1日 壹、事件摘要 國內於1995年制定施行「電腦處理個人資料保護法」,在資訊科技日新月異下,加諸法規本身適用上的限制,原有法制設計已不符實務需求。考量個資外洩事件日漸增加,歷經長時間討論,國內於2010年4月三讀通過新版個資法,將法律名稱調整為「個人資料保護法」,並在2012年10月1日正式實施新制。新法不僅全面調整法規內容,並大幅加重企業所負義務與責任,就民事責任而言,單一事件 賠償金額最高達到10億。對國內產業而言,如何有效因應個資法要求,採取妥適的對應策略降低風險,已成為企業運營上的關鍵課題。 貳、重點說明 一、新版個資法暨施行細則正式施行 個人資料保護可說是近期國內最受重視的議題,事實上國內早於1995年8月即制定施行「電腦處理個人資料保護法」,惟經過十餘年的發展,在電腦與資訊科技日新月異下,包括電子商務等新興商務模式,均廣泛蒐集個人資料,個人隱私的妥善保護,日益重要。然而,原有的「電腦處理個人資料保護法」,於適用主體方面,存在著行業別的限制,僅有「徵信業、醫院、學校、電信業、金融業、證券業、保險業及大眾傳播業」等八種特定事業,以及經由法務部會同中央目的事業主管機關共同指定的行業,方受到規範;此外,該法所保護的客體,亦限於經由「電腦或自動化設備」處理的個人資料,才受到保護,不包括非經電腦處理的個人資料,對於保護個人資料隱私權益規範,明顯不足。 個資外洩事件層出不窮下,2007年行政院消費者保護委員會提出的十大消費新聞中,「電子商務、電視購物個資外洩事件」即高居首位,促使法務部與經濟部透過「共同指定」方式,使無店面零售業(包括網路購物、型錄購物、電視購物等三種交易態樣)自2010年7月1日起適用「電腦處理個人資料保護法」。 為使個人資料保護法制規範內容,得以因應急速變遷的社會環境,行政院甚早即已提出「電腦處理個人資料保護法修正草案」,並將名稱修正為「個人資料保護法」,歷經立法院會多次討論,終於在2010年4月三讀通過,法律名稱調整為「個人資料保護法」,於5月26日由總統府正式公布。新法雖於2010年4月三讀通過,但為使企業及民眾有充分時間了解並因應新法,新版個資法並未於公布日施行,而是於該法第56條規定,由行政院另訂施行日期。經過長時間討論,「個人資料保護法」已由行政院決定在2012年10月1日正式實施,惟新法第6條關於特種資料原則上不得蒐集、處理與利用,以及第54條要求新法實施前已間接取得的個人資料,必須在一年內補行告知等二項規定,保留暫緩實施。 就個人資料保護法制而言,除最為重要的「個人資料保護法」外,依據母法制定的施行細則,也扮演著關鍵性的角色。原有的「電腦處理個人資料保護法施行細則」於1996年5月1日發布施行,鑒於「電腦處理個人資料保護法」已於2010年進行修正,並將名稱修正為「個人資料保護法」,法務部也配合新法修正內容,積極研商「電腦處理個人資料保護法施行細則修正草案」。隨著新版個人資料保護法確定於2012年10月1日正式上路,法務部另於2012年9月26日正式公告?正後的施行細則,並將細則名稱修正為「個人資料保護法施行細則」。新版個資法暨施行細則正式上路,促使國內個人資料保護工作,邁入全新的紀元。 二、個人資料管理制度與資料隱私保護標章 在「個人資料保護法」修正通過前,2008年6月立法院即已提案,建議政府參考國外作法,推動我國隱私權管理保護認證制度,隔年8月「行政院產業科技策略會議」(Strategic Review Board)中,決議推動「電子商務個人資料管理暨資訊安全行動方案」,並於同年12月核定放入99年至102年政府關鍵推動方案。 基於上述行動方案,經濟部自2010年10月起,委由財團法人資訊工業策進會執行「電子商務個人資料管理制度建置計畫」,並自2012年起續行推動「電子商務個人資料管理制度推動計畫」,建置推動「臺灣個人資料保護與管理制度」(Taiwan Personal Information Protection and Administration System, TPIPAS),期使企業於遵守個人資料保護法制的前提下,透過建立內部管理機制,適當保障消費者的個人資料,並在嚴謹的驗證要求下,確認導入企業是否符合制度要求,同時搭配「資料隱私保護標章」(Data Privacy Protection Mark, dp.mark)的發放,作為消費者判斷企業隱私維護能力的客觀指標。 針對個人資料管理制度的導入,事業應依循「臺灣個人資料保護與管理制度規範」逐步建立內容管理機制,該制度規範同時也是國內企業能否取得「資料隱私保護標章」(dp.mark)的審查指標。由於國內業者過往並無建立內部個資管理制度的經驗,「臺灣個人資料保護與管理制度」自2011年起,協助企業培訓「個人資料管理師」及「個人資料內評師」等制度專業人員,合格的個人資料管理師可協助企業於事業內部建立完整的制度,而內評師則是扮演確認企業建立的制度,是否符合制度規範要求的角色。截至2012年,國內已有近百家企業參與制度人員培訓,合計達426位管理師及131位內評師。在TPIPAS導入上,事業除了由合格的管理師自行建置導入管理制度外,也可尋求專業的外部輔導機構協助,「臺灣個人資料保護與管理制度」自2012年起,開放輔導機構登錄之申請,並於制度網站上公告符合資格要求的制度輔導機構,目前已有九家合格的輔導機構完成登錄作業,提供事業個資輔導服務。 事業完成內部管理體系建置後,便可向「臺灣個人資料保護與管理制度」提出驗證申請,驗證流程包括「書面審查」及「現場審查」二階段,事業通過驗證後,即具備使用「資料隱私保護標章」(dp.mark)的資格。目前國內已有統一超商、全家、博客來、樂天、亞東、康迅數位及欣亞等七家業者通過TPIPAS驗證並取得dp.mark,透過導入個資管理制度,強化消費者隱私資料的維護。 參、事件評析 「臺灣個人資料保護與管理制度」(TPIPAS)是以國內新版個人資料保護法內容為基礎,並參考國際組織對個人資料保護的最新要求,以及主要國家個資管理制度的推動經驗,所建立的專業個人資料管理制度。TPIPAS配合產業個人資料保護實務需求,將專業的法律要件轉化為內部個資管理流程,可有效協助產業建立完善妥適的個人資料管理制度,符合個資法規要求。在新版個人資料保護法上路之際,導入TPIPAS取得dp.mark,不啻是企業降低個資法風險,提升內部個人資料管理能力的最佳策略。
線上遊戲「虛擬財產」法律性質與產業發展趨勢之研究