美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。
該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為:
此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。
日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。 然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。 日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。 台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。
歐盟執委會將發展數位分身地球系統(Destination Earth system),應對氣候變遷危機和保護自然生態歐盟執委會(European Commission)於2022年3月30日提出了一項「目標地球倡議(the Destination Earth initiative)」,希望建立「目標地球系統」(Destination Earth system,以下簡稱DestinE系統),作為實踐歐洲「綠色協議」(European Green Deal)、「數位化戰略」(EU’s Digital Strategy)此兩項計畫的一部分。 DestinE系統係旨在全球範圍內開發一個高度精確的地球數位模型,透過整合、存取具價值性的資料與人工智慧進行資料分析等技術,以監測、建模和預測環境變化、自然災害和人類社會經濟之影響,以及後續可能的因應和緩解策略。未來希望將高品質的資訊、數位服務、模型預測提供予公部門運用,接著逐步開放給科學界、私部門、公眾等用戶,將有助於應對氣候變遷、實現綠色數位轉型,並支持塑造歐洲的數位未來。 為實現此一項目,歐盟執委會預計在2024年中前由數位歐洲計畫(Digital Europe Programme)投入1.5億歐元,並與科學、工業領域單位合作,包含歐洲航太總署(European Space Agency, ESA)、中期天氣預報中心(European Centre for Medium-Range Weather Forecasts , ECMWF)、氣象衛星開發組織(European Organisation for the Exploitation of Meteorological Satellites , EUMETSAT)等,透過建立核心平台逐步發展為DestinE系統,稱之為數位分身(Digital Twins)。 是以,DestinE系統將允許用戶存取地圖資訊(thematic information)、服務、模型、場景、模擬、預測、視覺化,其系統主要組成分為以下三者: 從而,DestinE系統用戶將能夠存取大量地球系統和社會經濟資料並與之互動,該系統可有助於: 核心服務平台(Core Service Platform)--該平台將基於開放、靈活和安全的雲端運算系統,提供決策工具、應用程式和服務,兼具大規模資料分析與地球系統監測、模擬和預測能力的數位建模和開放模擬平台。同時,也將為DestinE用戶提供專屬資源、整合數據、開發各自的應用程式。該平台服務的採購、相關維運將由歐洲航太總署負責。 DestinE資料湖泊( DestinE Data Lake)--資料湖泊將提供核心服務平台、數位分身所需的獨立專用資料存取空間,並提供多元的資料來源和有效管理與DestinE系統用戶共享的資料,同時提高、擴大資料處理和服務。其將由歐洲氣象衛星開發組織負責營運。 數位分身(Digital Twins)-- DestinE 數位分身將依據不同的地球科學領域主題進行即時觀測、分類,例如極端自然災害事件、因應氣候變遷、海洋或生物多樣性,最終目標是整合這些數位複製內容(digital replicas),形成、建立全面性的地球數位分身綜合系統。因此,DestinE 數位分身將為用戶提供量身打造的高品質資料,用於用戶特定的場景模擬開發、決策。而該DestinE 數位分身將由歐洲中期天氣預報中心進行開發。 從而,DestinE系統用戶將能夠存取大量地球系統和社會經濟資料並與之互動,該系統可有助於: 根據豐富的觀測資料集,對地球系統進行準確、和動態的模擬,例如:關注與社會相關的領域、氣候變化的區域影響、自然災害、海洋生態系統或城市空間。 提高、加強預測能力並發揮最大化影響,例如:保護生物多樣性、管理水資源、可再生能源和糧食資源,以及減輕災害風險。 支持歐盟相關政策的制定和實施,例如:監測和模擬地球發展(陸地、海洋、大氣、生物圈)與人為干預,藉以評估現有環境政策和立法措施的影響,作為制定未來政策的依據。或預測環境災難、衍生的的社會經濟危機,以挽救生命並避免大規模經濟衰退。抑或透過開發和測試場景,實現永續發展。
日本《研究資料基盤整備與國際化戰略》報告書日本因應各先進國家近年於開放科學概念下,政府資助研發計畫研究資料管理及開放之倡議與制度化推展趨勢,內閣府於2015年提出開放科學國際動向報告書,並在第5期科學技術基本計畫與2019年統合創新戰略中規劃推動開放科學。上述政策就研究資料管理開放議題,擬定了資料庫整備、研究資料管理運用方針或計劃之制定、掌握相關人才培育與研究資料運用現況等具體施政方針。在此背景下,內閣府於2018年設置「研究資料基盤整備與國際化工作小組(研究データ基盤整備と国際展開ワーキング・グループ)」,持續檢討日本國內研究資料管理、共享、公開、檢索之基盤系統建構與政府制度、國家研究資料戰略與資料方針、國際性層級之推動方向等議題,在2019年10月據此作成《研究資料基盤整備與國際化戰略》(研究データ基盤整備と国際展開に関する戦略)報告書,形成相關政策目標。 本報告書所設定的政策目標採階段性推動,區分為短期目標與中長期目標。短期預計在2020年前,正式開始運用目前開發測試中之研究資料基盤雲端平台系統(NII Research Data Cloud, RDC),針對射月型研發計畫研擬並試行研究資料管理制度,建構詮釋資料(metadata)之集中檢索體系,並建立與歐洲開放科學雲(EOSC)之連結;中長期目標則規劃至2025年前,持續調適運用RDC,正式施行射月型研發計畫之研究資料管理制度,確立共享與非公開型研究資料之管理框架,蒐整管理資料運用現況之相關資訊,並逐步擴張建立與全球研究資料共享平台間之連結。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。