德國聯邦經濟與能源部提出《GAIA-X計畫》建立歐洲聯合雲端資料基礎建設

  2019年10月29日,德國聯邦經濟與能源部提出GAIA-X計畫(Project GAIA-X),蒐集德國聯邦政府、產業和科學界代表意見,與歐洲夥伴合作共創高性能、具競爭力、安全可信賴的歐洲聯合雲端資料基礎建設平台。GAIA-X計畫被視為歐洲開放、透明的雲端數位生態系統搖籃,用戶得以在可信任的環境中,提供整合安全的共享資料;透過雲端資料的跨國合作,為歐洲國家、企業和公民創造聯邦資訊共享環境、促進數位創新、建構全新商業模式。GAIA-X計畫將嚴格遵循資料保護、公開透明、真實性與可信賴性、數位主權(Digital Sovereignty)、自由市場與歐洲價值創造、系統模組化及互操作性(Modularity and Interoperability)、資料可用性等歐洲價值觀及原則。

  GAIA-X計畫設定的目標包括:1.維護歐洲數位主權;2.減少對外國雲端供應鏈依賴;3.拓展歐洲雲端服務的國際市場;4.塑造創新數位生態系統。透過建立資料技術與數位經濟相關的基礎設施,將統一安全規格的雲端技術,落實在公共管理、衛生部門、企業和科研機構用戶與供應商間,形成開放數位資料共享的大平台。另外,GAIA-X計畫能進一步強化歐洲雲端服務供應商及歐洲商業模式的全球競爭力與規模,透過聯合雲端資料基礎建設,連接歐洲大小型企業、公部門、醫療及金融機構的伺服器,將全歐洲對於數位技術的多項投資串連在一起,積極發展AI人工智慧、智慧醫療、數位金融監管等新興產業,得以確保歐洲數位安全並提高雲端資料處理能力。

本文為「經濟部產業技術司科技專案成果」

相關附件
你可能會想參加
※ 德國聯邦經濟與能源部提出《GAIA-X計畫》建立歐洲聯合雲端資料基礎建設, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8415&no=55&tp=1 (最後瀏覽日:2026/02/05)
引註此篇文章
你可能還會想看
美國尋求ITC調查營業秘密盜用案件逐年增加

  近年來透過美國國際貿易委員會(International Trade Commission,簡稱ITC)調查營業秘密盜用的案件逐年增加,從2018 年僅有2件到2021年已增加至9件,此現象可能與疫情期間大量員工離職流動有關,預期2022年會有更多員工流動的情況,也將使企業面臨更大的營業秘密盜用風險。   雖然過往熟知ITC是專利糾紛的戰場,但ITC對於構成營業秘密盜用的「不公平行為」也有管轄權。尋求ITC營業秘密盜用調查和傳統聯邦或州法院訴訟相比的好處包括:(1) ITC可管轄在發生在美國以外的營業秘密盜用行為、(2) ITC調查時間短,平均在15-18個月會做出處置、(3) 向ITC尋求救濟時間未有限制,聯邦或州法院則會要求在發現或應該發現營業秘密盜用行為起3-5年內應提出。   若ITC對於營業秘密盜用調查成立,請求人可取得排除令(exclusion order)禁止因盜用營業秘密產生的商品進入美國,也可取得制止令(cease-and-desist order)停止已在美國的被訴產品銷售。雖然ITC不能提供金錢賠償,但企業可同時向聯邦或州法院提出訴訟請求金錢賠償,且與專利案件不同,ITC關於營業秘密調查的勝利對於尋求金錢賠償的地方法院訴訟具有排他性影響(preclusive effect)。   因此,當面臨營業秘密盜用者不在美國或需要在短時間取得調查結果的情況,尋求ITC營業秘密盜用調查對企業會是有利的做法。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

新德國包裝法簡介

  為有效降低包裝廢棄物對環境造成的汙染及不利影響,使製造商履行其B2C(business to customer)產品責任,德國以新的包裝法(Packaging Act, VerpackG)取代現行的規範(Packaging Ordinance,VerpackV),並已於2019年1月1日生效。   新包裝法VerpackG不同於VerpackV之處,在於除要求業者須加入原有的回收系統外,另授權Zentrale Stelle(Stiftung Zentrale Stelle Verpackungsregister,ZSVR)基金會作為新包裝法強制登記制度的執行單位,規範欲在德國銷售產品包裝之所有實體或網路製造商及零售商,有義務於ZSVR的數據資料庫”LUCID”註冊,才能在德國地區進行銷售,並且為全面提升透明度,乃規範於LUCID註冊之商家資訊皆屬可供大眾公開查詢。   依VerpackG規定,於2019年1月1日起未為註冊的商家,其包裝商品不能在德國上市,否則恐將臨100,000歐元之罰款;另未加入回收系統之商家,恐面臨200,000歐元之罰款。而除須註冊與回收系統的加入外,製造商及零售商尚須將以下之包裝相關資訊提供給ZSVR做比對: (一)註冊號碼(商家於資料庫註冊時,由ZSVR所提供之註冊號碼) (二)包裝材料及容積 (三)製造商履行生產者延伸責任(Extended Producer Responsibility)簽訂的包裝方案名稱 (四)與回收公司或回收系統間簽訂之契約期限 資料來源:自行繪製 圖 德國包裝法實施步驟

日本推動智慧醫療照護與巨量資料應用之趨勢觀察

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP