德國聯邦經濟與能源部提出《GAIA-X計畫》建立歐洲聯合雲端資料基礎建設

  2019年10月29日,德國聯邦經濟與能源部提出GAIA-X計畫(Project GAIA-X),蒐集德國聯邦政府、產業和科學界代表意見,與歐洲夥伴合作共創高性能、具競爭力、安全可信賴的歐洲聯合雲端資料基礎建設平台。GAIA-X計畫被視為歐洲開放、透明的雲端數位生態系統搖籃,用戶得以在可信任的環境中,提供整合安全的共享資料;透過雲端資料的跨國合作,為歐洲國家、企業和公民創造聯邦資訊共享環境、促進數位創新、建構全新商業模式。GAIA-X計畫將嚴格遵循資料保護、公開透明、真實性與可信賴性、數位主權(Digital Sovereignty)、自由市場與歐洲價值創造、系統模組化及互操作性(Modularity and Interoperability)、資料可用性等歐洲價值觀及原則。

  GAIA-X計畫設定的目標包括:1.維護歐洲數位主權;2.減少對外國雲端供應鏈依賴;3.拓展歐洲雲端服務的國際市場;4.塑造創新數位生態系統。透過建立資料技術與數位經濟相關的基礎設施,將統一安全規格的雲端技術,落實在公共管理、衛生部門、企業和科研機構用戶與供應商間,形成開放數位資料共享的大平台。另外,GAIA-X計畫能進一步強化歐洲雲端服務供應商及歐洲商業模式的全球競爭力與規模,透過聯合雲端資料基礎建設,連接歐洲大小型企業、公部門、醫療及金融機構的伺服器,將全歐洲對於數位技術的多項投資串連在一起,積極發展AI人工智慧、智慧醫療、數位金融監管等新興產業,得以確保歐洲數位安全並提高雲端資料處理能力。

本文為「經濟部產業技術司科技專案成果」

相關附件
你可能會想參加
※ 德國聯邦經濟與能源部提出《GAIA-X計畫》建立歐洲聯合雲端資料基礎建設, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8415&no=55&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

美國高速公路運輸安全局(NHTSA)發佈針對車輛對車輛間溝通的研究報告

  國家高速公路運輸安全局(NHTSA)發佈即將針對車輛與車輛間通訊訂立規則的訊息,以管理車對車之間(V2V)通訊技術,V2V技術最主要著眼在於避免碰撞,根據調查百分之94的車禍事故都有人為因素牽涉其中,V2V技術可以讓車輛有效的認知碰撞的情況與潛在威脅。V2V技術仰賴的是鄰近車輛之間的通訊溝通並交換訊息,以警告駕駛潛在的導致碰撞安全威脅,例如:V2V可以警告駕駛前車正在煞停,所以候車必須隨之減速以免碰撞,或是警告駕駛在經過十字路口的時候處於不安全的情況,因為有一輛看不見的車輛正以高速朝路口靠近。V2V通訊技術使用精密的短距離通訊技術以交換車與車子之間的基本訊息,諸如:位置、速度、方向已決定是否要警告駕駛以避免碰撞。本項規則制訂的提案可謂是數十年來NHTSA與各部門間合作努力的成果,包含汽車產業界、各州運輸交通部門、學術機構以建立共識的標準。NHTSA的提案當中規制運用在所有輕型車輛V2V技術使用無線電傳輸協定與光譜頻寬總稱為精密短距通訊技術(DSRC)。這項立法規制要求所有的車輛都應該要透過標準化技術講共同的語言,並且要求所有車輛均要納入安全與隱私保護的措施。本次即將管制的車輛包括一般轎車、多功能車(MPV)、卡車、公車,車輛在4536公斤以下的車輛未來必須配備V2V的通訊系統。 ●交換資訊部分 僅交換基本安全訊息,其中包含車輛的動態訊息諸如行進方向、速度、位置。這些基本的安全訊息每秒交換高達10次,裝有V2V裝置的車輛將保留這些訊息,去評判是否有碰撞的威脅。如果系統覺得有必要,將立即發出訊息警告駕駛採取必要措施避免立即碰撞。 ●V2V未來可能應用 ■十字路口動態輔助:車輛進入十字路口前,如果會發生碰撞會加以警示。 ■左轉輔助:駕駛一旦左轉會撞上來車的時候,特別在於駕駛視線被擋住的情況下,會加以警示。 ■警急電子煞車燈:同方向行進車輛,前車忽然減速的情況下,V2V技術可以允許使經過透視前車的情況下,知道駕駛目前正在減速,所以可以針對視線外的急煞車預先因應。 ■前端碰撞警示:前端碰撞警示將警告駕駛即將到來的撞擊,避免撞擊前車。 ■盲點警示與變換車道警示:車輛變換車道的時候系統將警告位於盲點區域的車輛即將靠近,避免在變換車道的時候發生碰撞。 ■超車警示:警告駕駛超車並不安全,因為對向車道正有車輛往此方向前進。 ●面對網路攻擊 ■設計訊息認證方案,確保交換訊息時的安全性。 ■每一項交換的訊息均會經過偵測避免惡意攻擊。 ■惡意攻擊的回報機制:諸如身份錯誤配置的訊息、惡意車輛阻擋V2V訊息。 ●隱私保護 在設計最初期即導入V2V僅允許分享蒐集通用的安全資訊,對於個人或其他車輛的資訊不能加以蒐集與傳輸。   目前NHTSA將針對本項提案蒐集公眾意見(預計將進行九十天),並審核公眾所提交意見是否可行,在發佈最終的規則。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

日本提出「放送法施行規則」修正草案,強化智慧防救災訊息發佈設備整備措施

  日本總務省鑒於311地震時媒體播送的減災效果,在2014年2月14日對日本放送法施行規則的部分修正展開公眾諮詢。此次的修正係基於放送法母法第108條規定。依據該條的規範,基幹放送業者在進行國內的廣播時,若發生暴風、豪雨、洪水、地震、大型火災或有發生之虞時,為預防其發生或減輕其所造成之損害,應進行有效之廣播。   蓋日本在311災後,因其對對社會所產生巨大的衍生影響,後續規劃研擬了許多因應法制政策及措施。根據日本內閣府「2013年防災白皮書」,日本政府在311地震後所規劃政策方向及重要施政措施有:防災對策推進會議檢討會議的最終報告、災害對策法制的改正、與防災基本計畫的修正等各層面工作。   此外,依據日本防災對策推進會議檢討會議在2012年7月所完成之報告,其中對於災害立即回應體制的充實與強化,及建立綜合的防災資訊系統,建議應蒐集並提供必要之資訊,以盡早提供根本性的改善為目標。並且,為因應災害防救需要及強化即時應變能力,建立智慧防救災體系即屬刻不容緩,如何能運用各種多元性傳遞管道,落實將緊急性災害防救重要資訊傳送至每位國民,遂成關鍵議題。   而此次放送法施行規則的修正則擬增訂第86-2條,要求基幹放送業者應就基幹放送設備等向總務省所擬定的「基幹放送等整備計畫」;其中,關於母法108條廣播之確實實施而有特別必要者,並應取得總務省之確認。修正案擬增訂的101-2條除重複上述意旨,並要求總務省在確定確認上述計畫後,並應將公開其計畫的相關內容。 其中,對於地震防災對策特別措施法(地震防災対策特別措置法) 、水防法 與關於在土砂災害災害警戒區域內等的土砂災害防止推進的法律(土砂災害警戒区域等における土砂災害防止対策の推進に関する法律)等規範所訂定易受災區域內發信設備之設置,皆納入上述應被確認計畫的範圍。   日本屬地處地震頻繁國家,對於災害防救體系甚為重視,並投入大量資源加以發展。未來日本對於推動智慧防救災體系,是否會有更多進一步法制修改及調整,值得我們持續進行關注。

TOP