日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。
「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。
本文為「經濟部產業技術司科技專案成果」
美國司法部和專利商標局於今年(2013)1月9日發表聯合聲明,呼籲法官應謹慎對待「標準關鍵專利」(Standard Essential Patent)產品的禁售問題。 在該項聯合聲明發表前,美國聯邦貿易委員會 (Federal Trade Commission, FTC) 亦曾主張除少數特定情況外,侵犯標準關鍵專利的產品應處以賠償金,而非核發禁售令(Sales Bans)。該項聯合聲明要點歸納如下: 1.以公眾利益為最高優先考量,謹慎核發禁售令 聲明呼籲美國國際貿易委員會(United States International Trade Commission, ITC) 決定是否禁止使用關鍵專利的產品進口時,應以公眾利益為最高優先考量,此舉將增加持有「標準關鍵專利」的公司獲得禁售令之困難度,未來擁有「標準關鍵專利」的公司僅在極少數特殊的情況下獲得禁售令。 2.未具強制拘束力 聯合聲明僅代表司法部和專利商標局相關當局對專利問題的看法,雖可能影響法官心證,但聲明不具強制拘束力。 近來,美國各地方法院與ITC皆有未准核發禁售令之實際案例。例如:去年(2012)6月美國芝加哥法官Richard Posner駁回 Google 因部分標準關鍵專利有侵權疑慮申請禁售 iPhone;ITC在Apple Inc. 與Samsung Electronics 的專利訴訟中,認定Apple Inc. 未侵犯 Samsung Electronics的標準關鍵專利,並拒絕核發禁售令。
歐盟推出《網路韌性法案》補充歐盟網路安全框架歐盟為提升網路數位化產品之安全性,解決現有網路安全監管框架差距,歐盟執委會於2022年9月提出《網路韌性法案》(EU Cyber Resilience Act)草案,對網路供應鏈提供強制性網路安全標準,並課予數位化產品製造商在網絡安全方面之義務。該法案亦提出以下四個具體目標: 1.確保製造商對於提升產品之網路安全涵蓋整個生產週期; 2.為歐盟網路安全之合法性創建單一且明確之監管架構; 3.提高網路安全實踐之透明度,以及製造商與其產品之屬性; 4.為消費者和企業提供隨時可用之安全產品。 《網路韌性法案》要求製造商設計、開發和生產各種硬體、有形及軟體、無形之數位化產品時,須滿足法規要求之網路安全標準,始得於市場上銷售,並應提供清晰易懂之使用說明予消費者,使其充分知悉網路安全相關資訊,且至少應於五年內提供安全維護與軟體更新。 《網路韌性法案》將所涵蓋之數位化產品分為三種類別(產品示例可參考法案附件三):I類別、II類別,以及預設類別。I類別產品之網路安全風險級別低於II類別產品、高於預設類別,須遵守法規要求之安全標準或經由第三方評估;II類別為與網路安全漏洞具密切關連之高風險產品,須完成第三方合格評估始符合網路安全標準;預設類別則為無嚴重網路安全漏洞之產品,公司得透過自我評估進行之。法案另豁免已受其他法律明文規範之數位化產品,惟並未豁免歐洲數位身份錢包、電子健康記錄系統或具有高風險人工智慧系統產品。 若製造商未能遵守《網路韌性法案》之基本要求和義務,將面臨高達1500萬歐元或前一年度全球總營業額2.5%之行政罰鍰。各歐盟成員國亦得自行制定有效且合於比例之處罰規則。
美國總統簽署有關監管數位資產的行政命令美國總統於2022年3月9日簽署有關監管數位資產的行政命令(Executive Order on Ensuring Responsible Development of Digital Assets),有鑑於加密貨幣(cryptocurrencies)在內的數位資產於過去大幅成長,自5 年前的 140 億美元市值快速增長到去年11月的 3 兆美元市值,並且有100 多個國家正在探索央行數位貨幣(Central Bank Digital Currency, CBDC)。為使美國政府有整體性的政策以應對加密貨幣市場的風險與數位資產及其基礎技術的潛在利益,該行政命令以消費者與投資者保護、金融穩定、打擊非法融資、增進美國競爭力、普惠金融、負責任的創新為六大關鍵優先事項。 為實現關鍵優先事項,行政命令中所採取的具體措施包含:(1)政府機關應合作來保護美國消費者與企業,以因應不斷成長的數位資產產業與金融市場變化; (2)鼓勵金融監管機構識別與降低數位資產可能帶來的系統性金融風險,制定適當的政策建議以解決監管漏洞;(3)與盟友合作打擊非法金融與國安風險,減輕非法使用數位資產所帶來非法金融與國家安全風險;(4)運用數位資產的技術,促進美國在技術與經濟競爭力上保持領先地位;(5)支持技術創新並確保負責任地開發與使用,同時優先考慮隱私、安全、打擊非法利用等面向;(6)鼓勵聯準會研究CBDC,評估所需的技術基礎設施與容量需求。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。