日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。
「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。
本文為「經濟部產業技術司科技專案成果」
2024年德國預計制訂或修正多部法規,以達成2023年8月公布的德國資料戰略《透過資料利用取得進展》(Fortschritt durch Datennutzung)文件中所設定的目標。該戰略由內政部、經濟與氣候行動部、數位與交通部聯合訂定,規劃德國資料政策與法規的工作進程,以期打破資料封閉的現狀、拓展資料應用的範圍。 德國資料戰略目標與重點摘要如下: 1.更多的資料: (1)公部門資料:藉由統整跨部門的資料增加資料的可近用性,並透過新訂法規提升資料近用機會,包括《交通資料法》(Mobilitätsdatengesetz)確保交通資料的品質和使用規則、《聯邦透明度法》(Bundestransparenzgesetz)作為取得政府資料的法源依據、《研究資料法》(Forschungsdatengesetz)簡化科研資料的取得,以及為增加健康資料二次利用起草的《健康資料利用法》。 (2)私部門資料:德國政府將訂定並提供資料共享之契約範本,以降低資料的交易、操作成本,並評估增修公平競爭相關法規來協助企業間的資料合作。另將新訂《員工資料保護法》(Beschäftigtendatenschutzgesetz),重整散於歐洲人權法院及德國國內與員工資料相關之規範。 2.更好的資料:德國將積極參與國際資料標準訂定與遵循,確保資料的品質、互操作性,以及標準化的資料描述。相關工作包括草擬關於業者使用cookie等數位追蹤技術如何取得使用者同意的管理規範,並將依歐盟準則評估是否訂定不法重新識別之刑責;另外預計建立文化、農業等主題資料室用以協助政府決策。 3. 資料利用和資料文化:為使資料可持續地利用與發展,政府機關方面將設置資料專責人員,並在以政府資料訓練大型語言模型技術時由新設的資料諮詢中心協助。公民數位能力方面,將於STEM 2.0教育計畫中規劃培育資料概念,促進未來社會發展出更多樣的資料應用機會。 德國資料戰略涉及政府、企業、研究單位和公民各層面,顯示資料的重要性逐漸成為德國重大的課題,亦是我國在建立資料治理時如何確保資料品質、交換義務與使用規則的參考方向。
日本雅虎公布個資刪除標準自從歐洲法院判決谷歌(Google)應該尊重當事人的「被遺忘權」,從搜尋結果移除敏感、不當或過時的資訊聯結後,日本雅虎(Yahoo!)於2014年11月組成了專家小組,針對民眾請求刪除網路搜尋結果時,搜尋引擎應該在何種程度上及如何給予回應等議題進行討論,並於2015年3月30日公布了個資刪除標準,隔日起生效。 日本雅虎表示,當搜尋某人的姓名,出現其病歷、過去曾經犯下的輕罪等敏感性資訊或明顯侵害個人權益的資訊(如非公眾人物的地址、電話號碼等)時,當事人可以請求刪除搜尋結果,但在決定是否准許當事人請求前,雅虎將先行檢查當事人係屬成年人、弱勢族群或公眾人物(包括國會議員、公司高階主管及影視圈名人等)。至於那些被強烈懷疑為非法的性愛照片,如兒童色情或報復性色情(未經本人同意而散播的親密照片)等,將主動予以封鎖而無法瀏覽。 由於線上文字及圖片相當容易複製,不願意公開的資訊被公開在網路上而無法移除時,往往造成當事人心理上極大的痛苦,於搜尋階段便設法封鎖有問題的資訊,能夠有效地防止因資訊傳播而帶來的傷害。但從言論自由及知的權利的角度出發,某些資訊的揭露本身即具有公益色彩,應該適度限制當事人移除資訊的請求。日本雅虎率先公布個資刪除標準,預料將帶動亞洲入口網站對於隱私保護的重視。
日本經產省預計向國會提出「不正競爭防止法」修正草案進行審議 美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。 此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。 時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。