日本農林省研議農業AI契約指引

  日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。

  「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 日本農林省研議農業AI契約指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8418&no=57&tp=5 (最後瀏覽日:2026/01/02)
引註此篇文章
你可能還會想看
加拿大反垃圾郵件法的施行可能衝擊電子商務產業

  加拿大政府於2010年12月通過反垃圾郵件法,並將於2011年底前生效,加國訂定此法律目的在於藉由遏止垃圾郵件、身分盜用、網路釣魚、間諜軟體、病毒、殭屍網路及誤導性的商業表示等行為,建立新的規範機制與罰則,解決此類線上威脅,從而促進電子商務發展。   目前引發兩派看法,自電子商務角度以觀,企業經營者倚賴電子郵件與消費者互動,而新法要求企業經營者在發商業行銷郵件前須先獲得同意,且必須有明確的取消訂閱機制供收信人選擇。雖在交易過程中獲得的電子郵件地址,將被視為已默示同意發送信息,但只能於最後一次購買日期後兩年內發信,如此企業必須另外建立符合法令規定的郵件清單並加以管理,對企業經營者而言著實是一種負擔。且因為新法定有罰則,若違反法令,加拿大廣播及電訊管理委員會(Canadian Radio-television and Telecommunications Commission, CRTC)有權對個人處以最高100萬元的行政罰款,對公司最高罰款可達1,000萬元,如此使因業務需要而發送大量電子郵件的公司,包括電信公司、銀行等感到惶惶不安。同時另一方面有論者質疑此法律的執行成效,因大部分的垃圾郵件非自加拿大當地所發出,要如何達到減少並遏止前述線上威脅,效果存疑。   另一派見解則認為,在此法案通過前,加拿大是八大工業國中,唯一没有具體的垃圾郵件管理辦法的國家。雖然此法影響電子商務產業,然而知名企業也可能會濫發商業郵件,且縱使發送郵件公司並非在加拿大本地發送垃圾郵件,其未必在加拿大無分支機構,垃圾郵件確實對加拿大人民造成損害,因此制定並施行反垃圾郵件法是必要的。

美國生技學名藥法案不利廉價藥品供應

  近來國際藥商逐漸將研發眼光放在市面上既存的蛋白質生技學名藥(follow-on biologics, Biosimilar, Biogenerics)上,顧名思義,生技學名藥乃是仿製市面上的生技藥品,而在臨床效用上與所仿製的藥品完全一樣或只是做些微調整改良。   目前生技學名藥並無法適用Hatch-Waxman Act下之「簡易新藥申請」(Abbreviated New Drug Application,ANDA)程序,原因在於生技製藥通常為複雜的大分子,難以確認其與上市產品100%相同,故美國FDA採取另立新法管理的態度,但迄今仍未通過任何法律。在歐盟,由歐洲藥品管理局(European Medicines Agency)所發布的生技學名藥核准準則只要求藥商提出其分子具有與上市藥品相同之物理特性及毒性安全數據即可上市,故現行已有少部分生技學名藥在歐洲上市。   因而藥商在無簡易上市的程序下,只能循完整的臨床有效性試驗程序。事實上這與現行美國擬對生技學名藥上市管理所提出的法律草案內容一致,目前提出於國會山莊的三個法律草案版本(Sen. Ted Kennedy’s S.1695, Sen. Judd Gregg’s S.1505 & Rep. Anna Eshoo’s H.R.5629)皆強制大部分生技學名藥上市前必須經過完整的臨床有效性試驗。   相反的,傳統學名藥在自1984年的Hatch-Waxman Act以來,並無需進行最昂貴的第二及第三階段之臨床試驗,也因此對於病患、消費者等而言,生技學名藥價格並不友善,通常只比其所仿製的上市藥品便宜一至二成,在有市場利基的功用調整下則有可能更貴;這比起競爭激烈的學名藥價格動輒較其原始藥品便宜五成以上相去甚多。並且所費不貲的臨床實驗亦將使生技學名藥只有擁有龐大資源的少數大藥廠能取得入場門票,因此專家預估生技學名藥的立法並不會像Hatch-Waxman Act一樣,進而形成生技學名藥業(generic biotech industry),而是形成所謂的生技仿製業(me-too industry)。

何謂「ERIC」?

  為加強歐盟及各成員國的研究基礎設施合作,從發展政策方面,於2002年成立「歐洲研究基礎設施策略論壇」(European Strategy Forum on Research Infrastructures, ESFRI)協助各會員國統籌規劃RIs(Research Infrastructures, RIs)的發展藍圖。在法律層面,於2009年通過「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EU) No 723/2009 of 25 June 2009 on the Community legal framework for European Research Infrastructure Consortium (ERIC),使各歐盟會員國、夥伴國家、非夥伴國家之第三國家或跨政府國際組織等對於分散的RIs整合起來後,可向歐盟執委會提出申請,依該號規則取得法律人格,成立「歐盟研究基礎設施聯盟」(European Research Infrastructure Consortium, ERIC),且可為權利得喪變更之主體,更可與他方簽訂契約或成為訴訟當事人,使其具有自我經營管理之能力。   截至目前為止(2015年9月),歐盟的RIs正式成立11個ERIC,並且透過國際間合作將RIs做更有效率之使用。國際上近年來創新研發競爭激烈,歐盟執委會為了持續推動建置世界級歐洲研究區域(European Research Area, ERA),無論在資金面、政策面及法律層面均有積極作為,在強化歐盟RIs同時促進國際科技研發合作,俾使歐盟於研發創新的領域保持世界領導之地位,歐盟未來仍會持續推動各個重要研發領域的ERIC,ERIC對於整合歐盟各國重大RIs負有重要使命。

美國國防部「人工智慧國防運用倫理準則」

  美國國防部(Department of Defense)於2020年2月採納由美國國防創新委員會(Defense Innovation Board, DIB)所提出之「人工智慧國防運用倫理準則(AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the Department of Defense)」,以衡平倫理與人工智慧於國防帶來之增益。   美國國防創新委員會為美國聯邦政府下之獨立委員會,設置目的在於依美國新創科技,提供意見予美國國防部,與美國國防部並無隸屬關係。有鑑於人工智慧之運用範疇日益增廣,美國國防創新委員會遂提出旨揭「人工智慧國防運用倫理準則」,以因應人工智慧於國防之應用所產生之問題。   倫理準則適用於「戰爭或非戰爭用途之人工智慧之設計以及應用」,對於「人工智慧」之定義,倫理準認為人工智慧並無精確之範疇,只要「對於資訊有所處理並旨在達到所賦予任務之資訊系統」,皆為本準則下之人工智慧。倫理準則指出,「人工智慧」與美國國防部3000.09指令下之「自動化武器系統(Autonomous Weapon System)」之定義不同,但有可能重疊,而所謂「自動化武器系統」為「一經人類選擇啟動,即可在無人類監督之情形下,自動針對目標進行鎖定或進行攻擊之自動化武器系統」。   美國國防創新委員會表示,該準則旨在切合美國既有憲法、法律、國際公約之傳統標準下,融入現代化對於人工智慧之要求,如國際公約中之戰爭法(Law of War)即為本準則之傳統標準之一,舉例而言,如人工智慧被裝置於武器中,其設計及應用應符合最小傷亡原則、避免傷及無辜原則等。   除此之外,準則亦包含以下現代化對於人工智慧之要求:(1)人類對於人工智慧系統之設計、應用以及使用應善盡判斷以及注意義務,且人類應該對於人工智慧系統因瑕疵所帶來之傷害負擔最終責任;(2)對於目標之選擇或分類,應維持公平性,且不得有歧視性;(3)對於人工智慧之設計、應用以及使用,應有明確之工程標準以及資料保存程序,此一工程標準以及資料保存程序應為一般具有專業知識之工程人員可據以理解、分析、追蹤問題所在並加以改善;(4)「戰爭或非戰爭用途之人工智慧」應有明確之應用領域,且完善之檢測、維修,應適用於該人工智慧之全部生命週期。

TOP