美國白宮發佈「AI應用監管指南」十項原則

  美國白宮科技政策辦公室(Science and Technology Policy, OSTP)在2020年1月6日公布了「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」,提出人工智慧(AI)監管的十項原則,此份指南以聯邦機構備忘錄(Memorandum for the Heads of Executive Departments and Agencies)的形式呈現,要求政府機關未來在起草AI監管相關法案時,必須遵守這些原則。此舉是根據美國總統川普在去(2019)年所簽署的行政命令「美國AI倡議」(American AI Initiative)所啟動的AI國家戰略之一,旨在防止過度監管,以免扼殺AI創新發展,並且提倡「可信賴AI」。

  這十項原則分別為:公眾對AI的信任;公眾參與;科學誠信與資訊品質;風險評估與管理;效益與成本分析;靈活性;公平與非歧視;揭露與透明;安全保障;跨部門協調。旨在實現三個目標:

一、增加公眾參與:政府機關在AI規範制定過程中,應提供公眾參與之機會。
二、限制監管範圍:任何AI監管法規實施前,應進行成本效益分析,且機關間應溝通合作,建立靈活的監管框架,避免重複規範導致限制監管範圍擴大。
三、推廣可信賴的AI:應考慮公平性、非歧視性、透明性、安全性之要求,促進可信賴的AI。

  這份指南在發佈後有60天公開評論期,之後將正式公布實施。白宮表示,這是全球第一份AI監管指南,以確保自由、人權、民主等價值。

相關連結
相關附件
※ 美國白宮發佈「AI應用監管指南」十項原則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8426&no=57&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
美國專利商標局「中國大陸商標與專利」報告

  美國專利商標局(USPTO)於2021年1月13日發布「中國大陸商標與專利:非市場因素對申請趨勢與智財體系之影響」(Trademarks and Patents in China: The Impact of Non-Market Factors on Filing Trends and IP Systems)研究報告,指出中國大陸近年來急遽增加的專利與商標申請案件數,從申請海外專利保護比率低、專利發明商業化比率低以及惡意(bad-faith)或詐欺性(fraudulent)商標申請案件比率高等現象觀察,申請案件數的爆量很有可能源自政府補貼或其他非市場因素的影響。   USPTO指出,中國大陸在2019年的專利與商標申請案件數均達到歷史新高,包含商標案件數達780萬件、發明專利申請案件數達150萬件,已經接近全球申請案件數的一半,也引起國際的關注。有別於其他國家因創新活動熱絡所帶動的專利及商標申請案件量增長,中國大陸在2020年世界智財組織(WIPO)所統計的智財授權比率僅排名第44,顯示中國大陸在智財商業化比率極低,其專利與商標申請案件數的暴增可能源於其他非市場因素。   USPTO指出,政府補貼可能是刺激商標與專利申請案件數增長的最大原因,由於中國大陸中央與地方政府持續推動商標補貼措施,補貼金額通常高於商標註冊費用,進而引導人民大量註冊非為商業使用之商標,在專利申請上也有類似的情況,中國大陸政府推動超過195個專利補貼措施,創造了以申請專利賺取補貼的誘因。這些非市場因素的商標及專利申請案件,除了可能誤導對於中國大陸創新能力的評估外,也正在破壞保護真正創新活動的能量。

英國生物資訊身分證法將納入醫療及犯罪紀錄 引發侵犯個人隱私爭議

  英國為了 減少受到恐怖威脅和犯罪攻擊,於去年底在一讀通過 英國身分證法,預計2008年實施。該法案最具爭議之處是記載資料,包含一些生物辨識 (biometrics) 資料,如指紋、容貌辨識和虹膜掃描等,這些資料將會儲存在國家身分辨識註冊資料庫中。反對身分證法案者認為,儲存這些資料已侵犯個人隱私權。保守黨議員表示,除非內閣能「確實證明」有其必要性,否則將反對身分證法案到底。   現行持有英國護照並不需要更新,但在2008年後想要申請更新或換發護照時,就必須遵守新的規定,也引發另一爭議問題~費用過高。倫敦政經學院的報告認為,每個人的新版身分證所需的技術成本,實際需要約 300英鎊;而登錄生物辨識資訊所需要的掃描器,就需要花4000英鎊;另外,所登錄的資訊判讀性會隨著時間而降低,至少得每五年重新掃描換發。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

歐洲個人資料保護委員會發布數位服務法與一般資料保護規則相互影響指引

「歐洲資料保護委員會」(European Data Protection Board, EDPB)於2025年9月12日發布《數位服務法》(Digital Services Act, DSA)與《一般資料保護規則》(General Data Protection Regulation, GDPR)交互影響指引(Guidelines 3/2025 on the interplay between the DSA and the GDPR)。這份指引闡明中介服務提供者(intermediary service providers)於履行DSA義務時,應如何解釋與適用GDPR。 DSA與GDPR如何交互影響? 處理個人資料的中介服務提供者,依據處理個資的目的和方式或僅代表他人處理個資,會被歸屬於GDPR框架下的控制者或處理者。此時,DSA與GDPR產生法規適用的交互重疊,服務提供者需同時符合DSA與GDPR的要求。具體而言,DSA與GDPR產生交互影響的關鍵領域為以下: 1.非法內容檢測(Illegal content detection):DSA第7條鼓勵中介服務提供者主動進行自發性調查,或採取其他旨在偵測、識別及移除非法內容或使其無法存取的措施。指引提醒,中介服務提供者為此採取的自發性行動仍須遵守GDPR要求的處理合法性,而此時最可能援引的合法性依據為GDPR第6條第1項第f款「合法利益」(legitimate interests)。 2.通知與申訴等程序:DSA所規定設通報與處置機制及內部申訴系統,於運作過程中如涉及個資之蒐集與處理,應符GDPR之規範。服務提供者僅得蒐集履行該義務所必須之個人資料,並應確保通報機制不以通報人識別為強制要件。若為確認非法內容之性質或依法須揭露通報人身分者,應事前告知通報人。同時,DSA第20條與第23條所規範之申訴及帳號停權程序,均不得損及資料主體所享有之權利與救濟可能。 3.禁止誤導性設計模式(Deceptive design patterns):DSA第25條第1項規範,線上平台服務提供者不得以欺騙或操縱其服務接收者之方式,或以其他實質扭曲或損害其服務接收者作出自由且知情決定之能力之方式,設計、組織或營運其線上介面,但DSA第25條第2項則宣示,線上平台提供者之欺瞞性設計行為若已受GDPR規範時,不在第25條第1項之禁止範圍內。指引指出,於判斷該行為是否屬 GDPR 適用範圍時,應評估其是否涉及個人資料之處理,及該設計對資料主體行為之影響是否與資料處理相關。指引並以具體案例補充,區分屬於及不屬於 GDPR 適用之欺瞞性設計模式,以利實務適用。 4.廣告透明度要求:DSA第26條為線上平台提供者制定有關廣告透明度的規範,並禁止基於GDPR第9條之特別類別資料投放廣告,導引出平台必須揭露分析之參數要求,且平台服務提供者應提供處理個資的法律依據。 5.推薦系統:線上平台提供者得於其推薦系統(recommender systems)中使用使用者之個人資料,以個人化顯示內容之順序或顯著程度。然而,推薦系統涉及對個人資料之推論及組合,其準確性與透明度均引發指引的關切,同時亦伴隨大規模及/或敏感性個人資料處理所帶來之潛在風險。指引提醒,不能排除推薦系統透過向使用者呈現特定內容之行為,構成GDPR第22條第1項的「自動化決策」(automated decision-making),提供者於提供不同推薦選項時,應平等呈現各項選擇,不得以設計或行為誘導使用者選擇基於剖析之系統。使用者選擇非剖析選項期間,提供者不得繼續蒐集或處理個人資料以進行剖析。 6.未成年人保護:指引指出,為了符合DSA第28條第1項及第2項所要求於線上平台服務中實施適當且相稱的措施,確保未成年人享有高度的隱私、安全與保障,相關的資料處理得以GDPR第6條第1項第c款「履行法定義務」作為合法依據。 7.系統性風險管理:DSA第34與35條要求超大型在線平台和在線搜索引擎的提供商管理其服務的系統性風險,包括非法內容的傳播以及隱私和個人數據保護等基本權利的風險。而指引進一步提醒,GDPR第25條所設計及預設之資料保護,可能有助於解決這些服務中發現的系統性風險,並且如果確定系統性風險,根據GDPR,應執行資料保護影響評估。 EDPB與其他監管機關的後續? EDPB的新聞稿進一步指出,EDPB正在持續與其監管關機關合作,以釐清跨法規監理體系並確保個資保護保障之一致性。後續進一步的跨法域的指引,包含《數位市場法》(Digital Markets Act, DMA)、《人工智慧法》(Artificial Intelligence Act, AIA)與GDPR的相互影響指引,正在持續制定中,值得後續持續留意。

TOP