歐盟執委會於今(2020)年2月19日發布「歐洲資料戰略」(A European strategy for data),宣示繼前一期「歐洲數位單一市場」戰略的基礎下,將於新一期戰略建立一個真正的歐洲資料空間及資料單一市場,以解鎖尚未被利用的個人資料及非個人資料,使資料能夠在歐盟內部、跨部門和跨領域自由流動,並使所有公部門、公民,或新創、中小、大企業都可存取資料及利用。
本戰略就此提出四大戰略行動,重點如下:
1、資料存取(Data Access)和利用的跨部門治理框架
(1)2020年第四季提出「共同歐洲資料空間」(common European data spaces)的治理立法框架:A.加強共同資料空間及其他跨公私部門資料利用方式的治理機制;B.於GDPR基礎下,基於科學研究目的利用敏感個資時,能較容易決定可以由誰如何利用哪些資料;以及使個人更容易同意其個資的公益目的利用。
(2)2021年第一季通過開放資料指令(Directive (EU) 2019/1024)的高價值資料集「施行細則/執行法」(implementing acts)。
(3)2021年提出《資料法》(Data Act)草案促進企業對政府的資料共享;以及解決現今企業間資料共享常遇到的障礙,例如多方合作建置資料時(如物聯網),釐清各方的資料使用權限及各自的法律責任。
2、推動方式:投資歐洲資料空間重大項目,以加強歐洲處理和使用資料的基礎設施及能力、加強資料互通性等。
3、加強個人資料管理:在GDPR第20條的可攜權(portability right)基礎下,於《資料法》賦權個人更能控制自己被政府及企業所掌握的個資,並使個人能自己決定由誰存取和利用。另外,將由數位歐洲計畫開發「個人資料空間」。
4、促進戰略性產業領域及公益領域的共同歐洲資料空間:歐盟執委會將協助建立包含「共同歐洲工業(製造)資料空間」(Common European industrial (manufacturing) data space)在內的9種領域共同歐洲資料空間,本戰略亦於附件介紹各領域的資料共享基礎背景。
另外,雖非戰略主軸,但文件內容及新聞稿皆提及,執委會將於2020年第四季提出《數位服務法》(Digital Services Act),為所有企業進入資料單一市場建立明確的規範、審查現有政策框架、加強線上平台的責任及保護基本權利。
總而言之,本戰略所欲推展的各項行動,將促進公民、企業組織、研究人員和公部門能更輕易的獲得和利用彼此的資料,進而確保歐盟成為資料驅動社會的模範和領導者。
成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素: 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。
淺析自駕車道路實驗規範-以日本法為對象 德國公佈聯邦政府人工智慧戰略要點德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。 德國人工智慧戰略要點摘要如下: 1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。 2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。 3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。 4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。 5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。 6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。 7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。 整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。
美國交通部發布國家道路安全戰略,建立五大核心目標期待實現道路零死亡願景美國交通部(U.S. Department of Transportation)於2022年1月27日發布「國家道路安全戰略」(National Roadway Safety Strategy, NRSS),向道路零死亡的長期目標邁出第一步。NRSS採取「安全系統方法」(Safe System approach)作為解決道路安全問題的指導性框架,其內容涵蓋行為干預(behavioral interventions)、道路應對措施(roadway countermeasures)、法律與政策之執行、車輛安全特性與性能,及緊急醫療照護等層面。不同於傳統安全方法,安全系統方法承認人為錯誤與人性脆弱的事實,基於道路死亡應可預防之原則,利用可提前準備的主動工具(Proactive Tools)預先識別並解決交通系統中的問題,並且建立一套能有效解決或降低風險的備援系統(redundant system),以確保某一環節發生故障時,其餘部份仍可正常運作。 NRSS將以五大核心目標為主軸,規劃全面性的安全措施,以實現道路零死亡願景。上述五大核心目標包括: (1)更安全的人們(safer people):鼓勵用路人採取安全、負責之行為,避免酒駕或毒駕等危險行為。 (2)更安全的道路(safer roads):設計可減少人為錯誤之道路環境,提高脆弱用路人安全移動之可能性。 (3)更安全的車輛(safer vehicles):透過改進既有技術與設備,並擴大對有效防止碰撞及使影響最小化的車輛技術與功能之使用,提高車輛安全性並降低碰撞頻率,例如:透過先進駕駛輔助系統(Advanced Driver. Assistance Systems, ADAS)預防或減輕碰撞的影響;或是利用偏離車道警示系統對車輛進行監控與紀錄,如檢測到車輛偏離車道,則立即向駕駛發出警報。此外應建立公共資訊資料庫,以便提供資訊幫助車輛安全行駛。 (4)更安全的速度(safer speeds):透過結合環境的道路設計、教育與推廣活動,以及活用自動測速器、依路段環境進行速限等方式,有效控制車輛行駛速度。 (5)事故後照護(post-crash care):透過完善緊急醫療照護提高事故存活率,並落實交通事故管理,避免事故再次發生。