美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容:

一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。

二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。

三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。

四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。

五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

 

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國「刑事鑑識演算法草案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8434&no=55&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
政府採購雲端服務新興模式暨資安一體考量之研析

蘇格蘭期望透過刑事司法革新,強化數位證據資料之管理,以提升刑事司法之效率

蘇格蘭於2024年9月24日向刑事司法委員會提交刑事司法革新與家庭暴力審查法案(Criminal Justice Modernisation and Abusive Domestic Behaviour Reviews (Scotland) Bill),期望透過數位程序,提升司法部門的有效性與效率。 在刑事司法數位化部分,主要為將2020年及2022年因疫情而制定的臨時措施正式化,臨時措施包含: 1、在訴訟文件上使用電子簽名。 2、以電子方式寄送訴訟文件。 3、以虛擬方式參加刑事法庭。 4、提高定額罰款限額。 5、羈押的全國管轄權。 此外,在刑事司法數位化部分,亦新增兩項數位創新條款,例如透過數位證據共享功能(Digital Evidence Sharing Capability, 下稱DESC)平臺來進行: 1、在刑事程序中使用證據照片而非實體證據。 2、使證據之複製品效力等同於實體證據。 對於刑事司法革新與家庭暴力審查法案而言,DESC在其中扮演了十分重要的角色。DESC改變了數位證據的儲存、編輯、傳輸以及在法庭上展示的方式。且DESC可透過多種身分驗證,並透過系統自動生成之具唯一性的資料識別碼並記錄上傳者及上傳時間,資料上傳系統後亦會自動留存所有資料編輯、修改、刪除行為等審核措施,確保數位證據的正確性、完整性與可驗證性,防止數位證據在上傳DESC後遭到竄改或損毀,亦可透過資料識別碼的比對確保數位資料的正確性與完整性。 蘇格蘭提交的刑事司法數位化與家庭暴力審查法案顯示,數位技術的應用範圍已擴大到司法領域,並透過身分驗證、記錄上傳者、上傳時間及資料識別碼等資料存證技術,確保數位證據資料的正確性、完整性與可驗證性。我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局等機關合作,透過區塊鏈技術建置「司法聯盟鏈共同驗證平台」,提升辨識數位證據同一性之效率,並確保數位證據難以被竄改,以達到加速訴訟進行之效果。惟如要透過法院採納數位資料為證據之方式,來達到加速訴訟進行之效果,重點在於要強化針對數位證據資料之管理,有訴訟證明需求的組織須通過b-JADE證明標章,以確保上鏈前之資料管理與上鏈後之資料品質。我國企業如欲強化數位資料的正確性、完整性與可驗證性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立資料存證制度,確保數位資料作為證據之效力,以提升法院採納數位資料作為證據之可能性,亦有利於加速訴訟程序之進行。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

世界智慧財產權組織執行ICANN/UDRP決定之趨勢分析

TOP