日本經產省修正〈電子商務交易及資訊商品交易等準則〉

  日本經濟產業省於2018年12月19日修正「電子商務交易及資訊商品交易等準則」(電子商取引及び情報財取引等に関する準則,以下稱「本準則」),主要係因應2018年《不正競爭防止法》在促進資料利用之環境整備方面,以及《著作權法》在應取得著作權人同意之行為範圍部分之修正。

  本準則首次公布於2002年3月,係經產省透過學界、產業界及金融界專家、相關主管機關、消費者等各方合作,整理民法等各相關法規釋疑而成,因此,須隨著法規修正更新本準則中的法規適用、爭點、說明等內容。經產省期能透過本準則提高交易當事人對電子商務交易及資訊商品交易相關市場的可預見性(foreseeability),並促進交易。

  本準則此次修正相關重點如下:

  1. 於網站上販售或公布用以安裝程式或存取、複製數位內容(digital content)及程式之帳號及密碼者,應負相關衍生之法律責任。
  2. 針對透過網路蒐集、輸出、於內部網路登載、投影他人著作物等利用行為者,加以限制規範。
  3. 若學校授課、企業培訓係使用網路進行遠距教學,或遠距教學服務之供應商有償向學校、企業提供課程而違法利用他人著作物者,則學校、企業、服務供應商須依著作權法負相關法律責任。
  4. 使用者(被授權人)基於契約取得供應商(授權人)之同意得以使用資訊商品,縱使該資訊商品之智慧財產權(著作權、特許權)受讓予他人,使用者仍得繼續使用該資訊商品。
  5. 因體驗版之手機應用程式、軟體、共享軟體,對使用功能或使用期間有所限制,若行為人違法散布解除限制方法於網路者,則行為人應負之法律責任。
  6. 向第三人提供全部或部份有償之資料集(dataset)等行為者,加以限制規範。
  7. 針對使用P2P共享軟體將檔案上傳至網路、自網路上下載以及提供P2P共享軟體等行為,就是否違反著作權法進行討論。
  8. 拍攝到第三人著作物之合理使用。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本經產省修正〈電子商務交易及資訊商品交易等準則〉, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8441&no=55&tp=5 (最後瀏覽日:2025/12/25)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

德國聯邦最高法院(BGH)判決醫師評價平台「Jameda」須刪除受評醫師個人資料

  德國聯邦最高法院(Bundesgerichtshof, BGH)在2018年2月20日的判決(Urt. V. 20.02.2018 – Az. VI ZR 30/17)中認定,網路評價網站(Bewertungsportale)之業務雖未違反聯邦資料保護法(Bundesdatenschutzgesetz, BDSG)規定,但其評價立場必須維持中立。醫師評價平台「Jameda」(www.jameda.de)之商業行為違反此項原則,故須依原告要求,刪除其在該網站之所有個人資料。   本案中,原告為執業皮膚科醫師,且非醫師評價平台「Jameda」之付費會員。然「Jameda」不僅將該醫師執業簡介列入其網站,且同時在其個人簡介旁,列出與其執業地點相鄰,具競爭關係之其他同為皮膚科醫師之付費會員廣告。反之,付費會員不但可上傳個人照片,且在其執業簡介旁,不會出現與其診所相鄰之競爭者廣告。   聯邦最高法院依據聯邦資料保護法第35條第2項第2款第1號 (§35 Abs. 2 S. 2 Nr. 1 BDSG) 規定,並經衡量同法第29條第1項第1款第1號 (§29 Abs. 1 S. 1 Nr. 1 BDSG) 規定之效果後,同意原告對「Jameda」提出刪除網頁所列個資之請求。法院見解認為,「Jameda」的廣告策略使其失去資訊與意見傳遞者之中立角色,並以自身商業利益為優先,故其言論自由不得優於原告之資訊自主權(informationelle Selbstbestimmung)。   該判決強制網路評價平台嚴格審查本身之廣告供應商務,並與聯邦憲法法院(Bundesverfassungsgericht)見解一致,用於商業目的之言論表達僅有低於一般言論自由的重要性。儘管如此,評價平台仍被視為介於患者間不可或缺的中介者(unverzichtbare Mittelperson),可使互不相識的病患,藉此獲得經驗交流的機會。   儘管本案判決同意原告刪除評價網站中所儲存個人資料之請求,但見解中,仍肯定評價網站具有公開醫療服務資訊之功能,符合公眾利益,受評價醫師被公開之個人簡介亦僅涉及與社會大眾相關之範圍。針對網站評分及評論功能之濫用,醫師仍可對各種不當行為分別採取法律途徑保障自身權益。由此可知,德國聯邦最高法院仍認定,評價網站之評分與評論機制,仍符合聯邦資料保護法規範之宗旨,惟若該評價網站以評價機制作為商業行銷手段,則不得主張其言論及意見表達自由高於受評價者之資訊自主權。

販賣或製造色情光碟的人並非不可原諒之徒

色情光碟在澳洲高中校園內的網路流傳,且以一片美金五元的價格販售,其光碟的內容有女性被性虐待的畫面,例如撒尿在女生身上,或燒女生頭髮等。澳洲警方警告,任何學生觀看或下載這些色情影片將處以罰款。   維多利亞警局資深警官麥可‧亨瑞表示,「罰款並不能阻止這些色情的影片。」色情犯罪偵查小組為了調查色情光碟在校園流竄的問題,整夜和這些青少年進行面談,以了解色情光碟對他們的影響。麥可說:「這些色情光碟影響青少年對於性的想法,而且現在並沒有任何人因為此事被罰款,即使要罰款,也要有證據來界定罰款的金額。」   澳洲法院總理約翰‧南斯說道:「販賣或製造這些色情光碟是一種可怕且無恥的行為,但我們不能因為我們的感受而以刑罰作為報復的工具,因為這些青少年年紀尚輕,而且有些人是因為同儕的壓力而犯罪的,我們應該試著體諒並且確定他們的人生不會因此次事件而留下不可抹滅的印記。」    因為即使以法律對販賣或製造色情光碟的青少年施以懲罰,在他們人生的紀錄中留下一個可恥的印記,但這些懲罰對於改善他們的未來,並沒有任何助益。

美國總統發布行政命令,促進資料中心基礎建設之發展

2025年7月23日,川普總統簽署行政命令,加速資料中心基礎建設(data center infrastructure)之發展。適用該命令之資料中心,需新增超過100百萬瓦(MW)電力負載,並新增瓦數專用於人工智慧推論、訓練、模擬或產生合成資料。 行政命令內容主要包含以下事項: 1. 政府將為合格資料中心基礎建設提供財政支持,如貸款、貸款擔保、補助金(grants)、稅收優惠(tax incentives)或承購協議(offtake agreements)。本行政命令所稱之合格資料中心基礎建設,其本體或相關設施需符合以下條件之一: (1) 業者承諾投資超過五億美元,五億以上之具體門檻以美國商務部長認定為準。 (2) 新增超過100百萬瓦(MW)之電力負載。 (3) 有助於維護國家安全。 (4) 經美國國防部、內政部、商務部或能源部之部長指定。 2. 撤銷拜登總統發布之14141號行政命令「推進美國在人工智慧基礎建設領域的領導地位」。該命令原要求在聯邦土地建設人工智慧資料中心者須提供關於多元與氣候議題之說明。 3. 指示政府機關簡化合格資料中心基礎建設的環境審查和許可。 (1) 相關政府機關應向環境品質委員會(Council on Environmental Quality)確定依《國家環境政策法》(National Environmental Policy Act),可以加速合格資料中心基礎建設建置的環境審查豁免措施。 (2) 環境品質委員會應考量資料中心基礎建設對環境產生之影響,制定新的環境審查豁免措施。 4. 對符合FAST-41計畫(FAST-41 program)要求之資料中心基礎建設,加速其取得建設相關許可之過程。 該計畫名稱及內涵緣起於《修復美國地面運輸法》第41章節(Title 41 of the Fixing America's Surface Transportation Act)。一般而言,參與該計畫之建設,需滿足指定投資額、受指定組織贊助、於指定地點興建,或合乎特定環境法規等要求。合乎計畫要求之建設,可與主管機關協調取得建設相關許可之時間,並由聯邦許可改善指導委員會(The Federal Permitting Improvement Steering Council)下屬團隊協助進行專案管理。 5. 環境保護局(Environmental Protection Agency)局長應依法定權限,加速確認可供合格資料中心基礎建設使用的棕地(brownfields)。 依美國環境保護局定義,棕地是指含有危險物質、污染物的土地,因開發利用困難,需進行養護、排除開發障礙,或以其他方式開發。 6. 內政部、能源部應依法確定適合用於建設資料中心的土地,適當授權合格資料中心基礎建設業者在聯邦土地上進行建造。 參酌該行政命令意指,美國政府期許減少環境政策對人工智慧資料中心及相關設施的影響,透過快速推動建設進程,確保美國經濟繁榮,以及在科學、數位經濟領域的領導地位。

TOP