美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則:
一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。
二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。
三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。
四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。
五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。
六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。
七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。
八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。
九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。
十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。
本文為「經濟部產業技術司科技專案成果」
新冠病毒業務中斷貸款計畫(CORONAVIRUS BUSINESS INTERRUPTION LOAN SCHEME,CBILS)係因應疫情於3月23日由隸屬於英國政府之英國商業銀行(British Business Bank為推動中小型企業發展之政策性銀行)所提供八成信用擔保的中小型企業紓困貸款計畫,但承辦銀行授信緩慢或不願承貸,導致成效不彰飽受批評。 英國商業銀行正視小型企業具規模小、缺少抵押物、信用不足、營業資訊不透明及缺乏與銀行間的往來紀錄之特徵,易有不易通過授信徵審,難以獲得融資紓困之問題。業於5月4日另行啟動復興貸款計畫(BOUNCE BACK LOAN SCHEME,BBLS),小型企業只需於受理該計畫之承貸銀行網站填寫1份簡易申請表,輸入公司名稱、地址、公司註冊編號、2019年之預估年營業額與銀行代碼跟帳號,即可申請承貸金額為2,000英鎊以上,最高至企業營業額之25%(上限為50,000英鎊)之六年期之小規模貸款,該貸款提供十成擔保,銀行無需進行授信評估,亦不得要求小型企業進行任何其他形式之個人擔保,BBLS開放至今僅一週,申請件數已高於CBILS。 我國中央銀行之小規模營業人簡易申貸方案以十成信用提供小額貸款,與BBLS相似,惟我國小規模營業人簡易申貸方案採取簡易評分表進行審核,評分表內仍就負責人個人信用及不動產擔保設定進行分數評比,與英國無須進行授信評估頗有差異,雖我國受疫情影響程度未如英國嚴重,但小規模營業人仍受有衝擊,兩國之小額貸款同為十成擔保,我國或可參酌英國授信放寬之作業,提供小規模營業人更寬一點、快一點、方便一點的活水挹注,使小規模營業人度過疫情難關及加速復甦。
日本提出「放送法施行規則」修正草案,強化智慧防救災訊息發佈設備整備措施日本總務省鑒於311地震時媒體播送的減災效果,在2014年2月14日對日本放送法施行規則的部分修正展開公眾諮詢。此次的修正係基於放送法母法第108條規定。依據該條的規範,基幹放送業者在進行國內的廣播時,若發生暴風、豪雨、洪水、地震、大型火災或有發生之虞時,為預防其發生或減輕其所造成之損害,應進行有效之廣播。 蓋日本在311災後,因其對對社會所產生巨大的衍生影響,後續規劃研擬了許多因應法制政策及措施。根據日本內閣府「2013年防災白皮書」,日本政府在311地震後所規劃政策方向及重要施政措施有:防災對策推進會議檢討會議的最終報告、災害對策法制的改正、與防災基本計畫的修正等各層面工作。 此外,依據日本防災對策推進會議檢討會議在2012年7月所完成之報告,其中對於災害立即回應體制的充實與強化,及建立綜合的防災資訊系統,建議應蒐集並提供必要之資訊,以盡早提供根本性的改善為目標。並且,為因應災害防救需要及強化即時應變能力,建立智慧防救災體系即屬刻不容緩,如何能運用各種多元性傳遞管道,落實將緊急性災害防救重要資訊傳送至每位國民,遂成關鍵議題。 而此次放送法施行規則的修正則擬增訂第86-2條,要求基幹放送業者應就基幹放送設備等向總務省所擬定的「基幹放送等整備計畫」;其中,關於母法108條廣播之確實實施而有特別必要者,並應取得總務省之確認。修正案擬增訂的101-2條除重複上述意旨,並要求總務省在確定確認上述計畫後,並應將公開其計畫的相關內容。 其中,對於地震防災對策特別措施法(地震防災対策特別措置法) 、水防法 與關於在土砂災害災害警戒區域內等的土砂災害防止推進的法律(土砂災害警戒区域等における土砂災害防止対策の推進に関する法律)等規範所訂定易受災區域內發信設備之設置,皆納入上述應被確認計畫的範圍。 日本屬地處地震頻繁國家,對於災害防救體系甚為重視,並投入大量資源加以發展。未來日本對於推動智慧防救災體系,是否會有更多進一步法制修改及調整,值得我們持續進行關注。
美國加州「對話機器人揭露法案」美國加州議會於2018年9月28日通過加州參議院之對話機器人揭露法案(Bots Disclosure Act, Senate Bill No. 1001)。此一法案於美國加州商業及專門職業法規(Business and Professions Code)第七部(Division)第三篇(Part)下增訂了第六章(Part)「機器人」乙章,擬防範「利用對話機器人誤導消費者其為真人同時並誤導消費者進行不公平交易」之商業模式,本法案將於2019年7月1日正式生效。依此法案,企業如有使用對話機器人,則應揭露此一事實,讓消費者知悉自己是在與對話機器人溝通。 美國加州對話機器人揭露法案對於「機器人」之定義為全自動化之線上帳戶,其所包含之貼文、活動實質上並非人類所形成。對於「線上」之定義為,任何公眾所可連結上之線上網站、網路應用軟體、數位軟體。對於「人類」之定義為自然人、有限公司、合夥、政府、團體等其他法律上組織或擬制人格。如業者使用對話機器人進行行銷、推銷時,有揭露其為對話機器人之事實,將不被認定違反對話機器人揭露法案,但揭露之手段必須明確、無含糊且合理可讓消費者知悉其所對話之對象為非人類之機器人。值得注意者為,美國加州對話機器人揭露法案,針對「美國本土造訪用戶群在過去12月間經常性達到每月10,000,000人」之網站,可排除此規定之限制。 本法案僅課予業者揭露義務,至於業者違反本法之法律效果,依本法案第17941條,需參照其他相關法規予以決定。例如違反本法案者,即可能被視為是違反美國加州民法揭露資訊之義務者而需擔負相關民事賠償責任。最後值得注意者為,本法案於第17941條針對「利用對話機器人誤導公民其為真人同時影響公民投票決定」之行為,亦納入規範,亦即選舉人如有利用對話機器人影響選舉結果而未揭露其利用對話機器人之事實時,依本條將被視為違法。
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。 在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。 英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。 根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。 指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。