歐盟執委會發布新產業策略指導方針,協助企業面對氣候中和及數位領導轉型之挑戰

  歐盟執委會於2020年3月10日公布產業策略指導方針,名為「因應全球競爭、綠色、和數位歐洲的新產業策略」(A new industrial strategy for a globally competitive, green and digital Europe),以幫助歐洲產業在面臨近年氣候中和及數位領導變遷時,因轉型而產生的過渡期。此次公布的產業策略指導方針,包含三大主題,分別是:(1)新產業策略(A new industrial strategy)、(2)新中小型企業策略(A new SME strategy)以及(3)企業與消費者的單一市場(A single market that delivers for our businesses and consumers);而其中又以「新產業策略」為該指導方針之重點。

  為提升歐洲的產業領導地位,「新產業策略」中論以三個關鍵優先事項,分別為:維持歐洲產業的全球競爭力和公平競爭環境、2050年以前達成氣候中和(climate-neutral)目標,以及塑造歐洲未來數位化。為達成前述優先事項,歐盟執委會提出一系列未來行動:

  1. 推行智財權行動計畫(Intellectual Property Action Plan)以保護歐盟技術主權,並採行適合綠色和數位轉型的法規框架;
  2. 持續檢討修正歐盟競爭相關法令(EU competition rules),確保法規能適應快速變化的經濟環境;
  3. 為維護產業在歐盟境內外的公平競爭環境,執委會將於在2020年中以前出版白皮書,處理歐盟單一市場中因外國補貼而引起的扭曲效應,以及歐盟境內的外國採購和外國資金問題;
  4. 推行關鍵原料行動方案(Action Plan on Critical Raw Materials),確保關鍵原物料穩定供應;支持戰略數位基礎設施和關鍵技術發展,增強歐洲產業及戰略自主地位;
  5. 其它則有對綠色公共採購進一步立法、發展低碳產業和技術、支持永續型智慧交通產業等。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布新產業策略指導方針,協助企業面對氣候中和及數位領導轉型之挑戰, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8447&no=55&tp=1 (最後瀏覽日:2025/11/01)
引註此篇文章
你可能還會想看
從歐洲法院實務看資料保護在智慧聯網時代下發展-以資料保存指令無效案和西班牙Google案為例

美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎

  繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。   於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。   預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

台韓生技數位內容產業 將正面衝突

  南韓及台灣在產業界的競爭日趨激烈,南韓十大新一代成長動力產業,多數與我國產業重點發展項目重疊,尤其我國全力發展兩兆雙星產業半導體、影像顯示、數位內容及生技產業及近期政府大力推動第三兆通訊及第四兆數位電視產業,也都是南韓十大主力產業,未來將面臨南韓產業嚴厲挑戰。    南韓選定十大新一代成長動力產業,包括生物科技、數位電視/廣播、影像顯示、智慧型機器人、未來型汽車、新一代半導體、新一代行動通信、智慧型家庭網路、數位內容/軟體產業、新一代電池;這些產業都以二○一二年為目標,以建立全球產業霸主或強國為期許,顯現南韓的民族性具強烈挑戰性及好勝心。    南韓的十大產業中的新一代半導體、影像顯示、數位內容及生物科技,與目前我國大力發展的半導體、影像顯示、數位內容及生物技術產業完全相同,目前兩國在影像顯示及半導體產業已展開激戰,未來在生技及數位內容產業也將正面衝突,其中又以TFT─LCD(薄膜電晶體液晶顯示器)為主的影像顯示產業,競爭最為激烈,我國希望在二○○六年搶下全球第一大TFT顯示器供應國,南韓也以全球第一為目標,雙方都將搶攻全球寶座。

TOP