歐盟執委會於2020年3月10日公布產業策略指導方針,名為「因應全球競爭、綠色、和數位歐洲的新產業策略」(A new industrial strategy for a globally competitive, green and digital Europe),以幫助歐洲產業在面臨近年氣候中和及數位領導變遷時,因轉型而產生的過渡期。此次公布的產業策略指導方針,包含三大主題,分別是:(1)新產業策略(A new industrial strategy)、(2)新中小型企業策略(A new SME strategy)以及(3)企業與消費者的單一市場(A single market that delivers for our businesses and consumers);而其中又以「新產業策略」為該指導方針之重點。
為提升歐洲的產業領導地位,「新產業策略」中論以三個關鍵優先事項,分別為:維持歐洲產業的全球競爭力和公平競爭環境、2050年以前達成氣候中和(climate-neutral)目標,以及塑造歐洲未來數位化。為達成前述優先事項,歐盟執委會提出一系列未來行動:
本文為「經濟部產業技術司科技專案成果」
為釐清自駕車事故發生時,該如何適用日本《汽車賠償法》相關規定,國土交通省於2016年11月設置「自動駕駛損害賠償責任研究會」,檢討︰(1)自動駕駛是否適用《汽車賠償法》上運用供用者概念?(2)汽車製造商在自動駕駛事故損害中應負何種責任?(3)因資料謬誤、通訊不良、被駭等原因導致事故發生時應如何處理?(4)利用自動駕駛系統時發生之自損事故,是否屬於《汽車賠償法》保護範圍等議題,並於2018年3月公布研究報告。針對上述各點,研究會認為目前仍宜維持現行法上「運行供用者」責任,由具有支配行駛地位及行駛利益者負損害賠償責任,故自駕車製造商或因系統被駭導致失去以及支配行駛之地位及行駛利益者,不負運行供用者責任。此外,研究報告亦指出,從《汽車賠償法》立法意旨在於保護和汽車行駛無關之被害者,以及迅速使被害者得到救濟觀之,自動駕駛系統下之自損事故,應仍為《汽車賠償法》保護範圍所及。
歐盟執委會以濫用獨占地位處罰斯洛伐克電信及其母公司德意志電信經過深入的調查後,歐盟執委會以違反歐洲聯盟運作條例(TFEU)第102條之禁止濫用獨占地位課處斯洛伐克電信(Slovak Telekom a.s.)及其母公司德意志電信(Deutsche Telekom AG)總計38,838,000歐元之罰金。 斯洛伐克電信以超過五年之濫用獨占地位之策略,阻擋其他來自斯洛伐克市場之競爭者提供寬頻服務,因而違反歐盟反托拉斯法。尤其,執委會認為其拒絕提供開放之用戶迴路(unbundled access to its local loops)予其競爭者,因而導致其他經營者之利潤擠壓。其母公司德意志電信對於其子公司之行為有責;因此,應連帶負擔斯洛伐克電信之罰款。此外,德意志電信於2003年已經因為在德國寬頻市場的利潤擠壓而被罰款,該公司亦被課處額外之罰款共31,070,000歐元,以確保嚇阻及制裁其反覆的濫用行為。 2005年8月,斯洛伐克電信公布在某些條件下,允許其他經營者使用其開放用戶迴路(ULL)。此外,斯洛伐克電信亦不正當地阻擋用戶迴路開放的必要網路資訊;單方面地減少規範中所要求其開放迴路之義務的範圍,以及,在每一個取得開放用戶迴路所需之步驟上,設定不公平的條款和條件(例如搭配、資格、和銀行擔保)。因而延後或阻止其他經營者進入斯洛伐克零售寬頻服務市場。 此外,當其他競爭者以斯洛伐克電信訂定之零售價格販賣寬頻服務予零售消費者時,將產生利潤擠壓而導致虧損;在此種情況下,其他經營者將無法進入斯洛伐克市場。
新加坡個人資料保護法修正草案新加坡通訊及新聞部(Ministry of Communications and Information, MCI)與新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於西元2020年5月14日至28日間針對其「個人資料保護法修正草案」進行民眾意見諮詢,總共收到87份回覆。綜合民眾回覆之意見後,同年10月5日,於議會提出了「個人資料保護法修正草案」,修正重點如下: 提高外洩個人資料者罰鍰金額,至該公司在新加坡年營業額10%或1000萬美元。MCI / PDPC說明,實際上於裁罰前會綜合考量個案事實與相關因素(如:嚴重性、可歸責性、影響狀況、組織有無採取任何措施減輕個資外洩造成的影響等),作為裁罰金額的判斷依據。此外,新加坡的個人資料保護法也加入了個資外洩通知義務,但與歐盟一般資料保護規範(General Data Protection Regulation, GDPR)仍有不同,例如:其多了評估是否通知的機制。 組織基於商業改善之目的,且遵守法定條件下,得未經同意使用個人資料,此處商業改善目的包含:(1)改善或加強提供之商品或服務,或開發新的商品或服務;(2)改善或發展新的營運方式;(3)瞭解客戶喜好;(4)客製化商品或服務所需。 在公司併購、重組、出售股份以及經營權轉讓等關於公司資產處置情形,得例外無需經當事人同意而蒐集、處理與利用個人資料。 新增資料可攜權相關規定。 處罰未經授權者處理個人資料之行為。針對民眾回覆之疑慮(認為草案內容不明確),MCI / PDPC說明預計在《法規與諮詢指南》中闡明有關授權行為的細節性規定,包含採取的形式。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。