新冠病毒業務中斷貸款計畫(CORONAVIRUS BUSINESS INTERRUPTION LOAN SCHEME,CBILS)係因應疫情於3月23日由隸屬於英國政府之英國商業銀行(British Business Bank為推動中小型企業發展之政策性銀行)所提供八成信用擔保的中小型企業紓困貸款計畫,但承辦銀行授信緩慢或不願承貸,導致成效不彰飽受批評。
英國商業銀行正視小型企業具規模小、缺少抵押物、信用不足、營業資訊不透明及缺乏與銀行間的往來紀錄之特徵,易有不易通過授信徵審,難以獲得融資紓困之問題。業於5月4日另行啟動復興貸款計畫(BOUNCE BACK LOAN SCHEME,BBLS),小型企業只需於受理該計畫之承貸銀行網站填寫1份簡易申請表,輸入公司名稱、地址、公司註冊編號、2019年之預估年營業額與銀行代碼跟帳號,即可申請承貸金額為2,000英鎊以上,最高至企業營業額之25%(上限為50,000英鎊)之六年期之小規模貸款,該貸款提供十成擔保,銀行無需進行授信評估,亦不得要求小型企業進行任何其他形式之個人擔保,BBLS開放至今僅一週,申請件數已高於CBILS。
我國中央銀行之小規模營業人簡易申貸方案以十成信用提供小額貸款,與BBLS相似,惟我國小規模營業人簡易申貸方案採取簡易評分表進行審核,評分表內仍就負責人個人信用及不動產擔保設定進行分數評比,與英國無須進行授信評估頗有差異,雖我國受疫情影響程度未如英國嚴重,但小規模營業人仍受有衝擊,兩國之小額貸款同為十成擔保,我國或可參酌英國授信放寬之作業,提供小規模營業人更寬一點、快一點、方便一點的活水挹注,使小規模營業人度過疫情難關及加速復甦。
數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
日本提出2020年創新願景的期中建言,主張應自未來需求中發掘創新方向日本經濟產業省所屬「研究開發與創新附屬委員會」於2020年5月29日統整了有關2020年創新願景的期中建言並作成報告。本次的願景建言,係著眼於日本於IT等領域無法推動新興產業的現狀,且在原本具有競爭優勢的領域上,又因新興國家崛起導致實質獲益降低,加之新型冠狀病毒疫情使經濟活動停滯等結構性變化,產生全球性的典範轉移等問題。故認為應自長遠觀點出發,視「從未來需求中發掘創新價值」的途徑為創新關鍵,化危機為轉機,並同步觀察國內外的動向,針對企業、大學、政府各界應採取的行動,綜整出2020年的期中建言。 本次期中建言以產業為核心,主要包含以下幾個面向:(1)政策:例如,為積極參與新創事業的企業規劃認證制度;透過修正產學合作指引、簡化〈技術研究組合(為成員針對產業技術,提供人力、資金或設備進行共同研究,並為成果管理運用,且具法人格的非營利組織型態)〉設立與經營程序、擇定地區開放式創新據點等手段深化與落實開放式創新;以「創造社會問題解決方案」與「保護關鍵技術」的研發活動為重心,鬆綁相關管制,並調整計畫管理方式等以協助技術投入市場應用;以2025年與2050年為期,就次世代運算(computing)技術、生化、材料與能源領域提出科技與產業發展的願景;藉由改善人才制度、數位轉型等方式,強化企業研發能量;(2)「從未來需求中發掘創新價值」概念:現行研發與導向商品化的模式,主要以既有的技術、設備等資源為基底,進行線性且單向的創新研發,重視短期收益與效率化,使成果應用未能貼近社會的實際需要,故未來應在此種模式之外,另從創造社會議題解決方案與切合未來需求的觀點出發,結合既有技術資源來擬定長期性的研發創新戰略並加以實踐;(3)產官學研各界角色定位與任務:大學與國立研發法人應強化其研發成果之商轉合作,調整課程內容以削減知識與人才產出不符合社會議題需要的問題;企業的創新經營模式,則應透過ISO56002創新治理系統標準、日本企業價值創造治理行動指針(日本企業における価値創造 マネジメントに関する行動指針)等標準實踐,擴大開放式創新的應用;政府則應採取調整稅制、建置活動據點等方式,建構並提供有利於開放式創新的環境,並針對產業發展願景中的關鍵領域(如感測器等AI應用關聯技術、後摩爾時代(post moore's law)運算技術、生化技術、材料技術、環境與能源技術等)進行投資。
日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。 SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。 研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。