歐洲專利局拒絕以AI為發明人的專利申請

  歐洲專利局於2019年12月20日,拒絕受理兩項以人工智慧為發明人的專利申請,並簡扼表示專利上的「發明人」以自然人為必要。另於2020年1月28日發布拒絕受理的完整理由。

  系爭兩項專利均由英國薩里大學教授Ryan Abbott(下稱:專利申請人)的團隊申請,並宣稱發明人是「DABUS」。DABUS並非人類,而是一種類神經網路與學習演算法的人工智慧,由Stephen Thaler教授發明並取得專利。專利申請人先於2019年7月24日將自己定義為DABUS的雇主並遞出首次專利申請,再於2019年8月2日改以權利繼受人名義申請(Successor in Title)。專利申請人強調系爭申請是由DABUS發明,且DABUS在人類判定前,即自我判定其想法具新穎性(identified the novelty of its own idea before a natural person did)。專利申請人認為該機器應可以被視為發明人,而機器的所有人則是該機器創造出的智慧財產權之所有人─這樣的主張是符合專利系統的主旨,給予人們揭露資訊、商業化和進行發明的動機。申請人進一步強調:承認機器為發明人可以促進人類發明人的人格權和認證機器的創作。

  在經過2019年11月25日的聽證程序(Oral Proceedings)後,歐洲專利局決定依《歐洲專利公約》(European Patent Convention)Article 81, Rule 19 (1)駁回申請。歐洲專利局強調,發明人必須是自然人(Natural Persons)是國際間的標準,且許多法院曾經對此做過相應的判決。再者,專利申請必須強制指定發明人,因為發明人需要承擔許多法律責任與義務,諸如取得專利權後衍生的法律權利。最後,雖然Article 81, Rule 19 (1)規定發明人應該要附上姓名與地址,但單純幫一個機器取名字,並不會使之符合《歐洲專利公約》的發明人要件。歐洲專利局強調,從立法理由即可知道,《歐洲專利公約》的權利主體僅限自然人和法人(Legal Persons)、專利申請的發明人僅限自然人。歐洲專利局表示,目前AI系統或者機器不具有權利,因為他們沒有如同自然人或法人一樣的人格(Legal Personality)。自然人因為生命而擁有人格,而法人的法人格來自於法律擬制(Legal Fiction)。這些法律擬制的人格來自於立法者的授權或者眾多司法判決的演進,而AI發明者是不具有此般的法律擬制人格。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲專利局拒絕以AI為發明人的專利申請, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8456&no=55&tp=5 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

掀起網路自由與版權衝突的另一場戰爭-Megaupload事件概述

掀起網路自由與版權衝突的另一場戰爭-Megaupload事件概述 科技法律研究所 法律研究員 劉得正 101年06月25日   Megaupload 是著名的線上網路硬碟服務商,提供用戶上傳檔案、藉此分享資料予他人之網路空間。自2005年3月間上線後,迅速累積用戶至1億8千萬,並一度排名全球網站瀏覽量第11名。然而在2012年1月19日卻遭到美國政府強制關閉,相關負責人(包括創辦人KIM DOTCOM)遭到美國司法部起訴,並透過國際合作逕予逮捕。此舉為網路環境投下前所未有之震撼彈。本文以下便針對此一個案提出簡要說明,釐清美國採取行動之依據及考量。 壹、Megaupload起訴依據   根據本案起訴書[1],司法部本次起訴KIM DOTCOM等,主要是認為其觸犯以下規定: 一、「共謀實施著作權侵權」[2]、「著作權侵權刑事處罰規定」[3]-   美國司法部認為Megaupload直接藉由複製、散佈盜版物來賺取利潤,構成對著作權之侵權。因其發現,Megaupload獲利來源主要來自網站上商業廣告之瀏覽量。為了提高廣告瀏覽量,Megaupload規定用戶所上傳文件之存續時間,取決於該文件的下載次數,並鼓勵上傳可長期受到使用者青睞下載的文件。換言之,Megaupload獲利與盜版物之散佈具有直接關連。   其次,司法部發現,Megaupload網站上已使用一種「移除程序」來辨認兒童色情內容,但卻未將此技術應用在移除侵權的內容上,或以其他方式使「移除程式」無法搜尋特定盜版物,顯見Megaupload係故意以散佈盜版物來賺取商業利益,並因此無法適用數位千禧年著作權法案中,對於網路服務提供者之「安全港」條款。 二、「共謀詐欺」[4]與「網路詐欺、教唆及幫助網路詐欺」[5]-   此外,司法部認為,Megaupload網站運作方式,除了構成著作權侵權外,其以組織運作方式進行犯罪,以及透過網路進行犯罪,此等行為已符合「共謀詐欺」及「網路詐欺」 ( Fraud by Wire ) 。同時,Megaupload使用激勵程序來鼓勵用戶上傳「流行」的文件,亦構成教唆及幫助網路詐欺。 三、洗錢防制規定[6]-   最後,美國司法部認為KIM DOTCOM等Megaupload之負責人,有針對上述不法所得再進行金融交易之行為,因此亦違反洗錢防制規定。 貳、Megaupload案目前發展情況   如前所述,美國司法部係透過國際合作,逮捕相關負責人。以創辦人KIM DOTCOM而言,目前仍在紐西蘭政府監管之下,不過近期內,將依美國司法部之請求,召開引渡聽證會,討論是否引渡KIM DOTCOM至美國受審。至於在犯罪調查方面,紐西蘭法院已下令允許美國FBI可從Kim Dotcom電腦中拷貝超過150TB的資料,以作為美國司法部指控Megaupload之訴訟證據[7],相信對於是否得以引渡Kim Dotcom,將帶來一定影響。 參、代結論   Megaupload案之所以造成如此大的風波,主要可從對用戶之影響與對整體網路環境之影響看起。在用戶方面,首要原因在於Megaupload擁有廣大用戶,美國查封Megaupload之結果,造成眾多付費用戶之權益受損,此部分將如何求償,將會是相當大的難題。其次,如前所述,本次紐西蘭法院已容許美國FBI拷貝Megaupload。其中將涉及用戶資料之探知,對此是否有適當的保護措施保障用戶隱私,將是考驗美國政府之另一難題。   至於對整體網路環境面而言,此一事件是首次針對網路平台業者 ( 網路硬碟服務商 ) ,所進行之大規模跨國查緝行動。眾多網民多形容此舉象徵著作權凌駕網路言論自由的時代已經來臨,未來網路服務業者間勢必將出現所謂的寒蟬效益。然而,有待觀察的是,本次美國司法部起訴之主要依據在於,主張Megaupload係故意利用複製、散佈盜版物,以獲取商業利益,對此美國法院是否能接受此一見解,事實上仍是未定之天。因美國司法部需說服法院,Megaupload並無善盡網路服務業者保護著作權之義務。更重要的是,僅是提供平台之Megaupload,能否被解釋侵權行為人,並非毫無疑慮。 [1]USA v Kim DotCom et al, U.S. District Court, Eastern District of Virginia, no. 1:12CR3 [2]18 U.S.C. § 371 - Conspiracy to Commit Copyright Infringement. [3]18 U.S.C. §§ 2,2319;17 U.S.C. § 506 - Criminal Copyright Infringement By Electronic Means & Aiding and Abetting of Criminal Copyright Infringement. [4]18 U.S.C. § 1962(d) - Conspiracy to Commit Racketeering. [5]18 U.S.C. §§2, 1343 - Fraud By Wire & Aiding and Abetting of Fraud by Wire. [6]18 U.S.C. § 1956(h) - Conspiracy to Commit Money Laundering. [7]“FBI told to copy seized Dotcom data”http://www.nzherald.co.nz/technology/news/article.cfm?c_id=5&objectid=10813260 (last visited 2012/06/25)

英國資訊委員辦公室(ICO)發布指引以因應歐盟一般資料保護規則(GDPR)正式施行

  為因應歐盟一般資料保護規則(General Data Protection Regulation,簡稱歐盟GDPR)於2018年5月正式施行,英國資訊委員辦公室(Information Commissioner’s Office, 簡稱ICO)於2017年11月21日發布一般資料保護規則指引(guide to general data protection regulation)(簡稱一般資料保護規則指引)。   ICO所發布的一般資料保護規則指引,係用於解釋歐盟GDPR的各條規定,協助企業符合歐盟GDPR的各項要求,適用於企業中擔負資料保護義務責任者。ICO說明本指引文件致力於擴展與歐盟GDPR、ICO所制定公告之其他指引文件、歐盟第29條工作小組制定公告之相關指導文件的聯結。歐盟第29條工作小組係由歐盟各會員國的資料保護機構代表組成,而ICO即為英國派任於該工作小組之資料保護機構代表。   ICO發布的一般資料保護規則指引,內容簡述如下:本指引文件係在建構歐盟GDPR法規的架構,將反映歐盟GDPR未來的導引與如何呈現,本指引內容有歐盟GDPR的重要定義(如歐盟GDPR適用對象、歐盟GDPR所欲保謢之資料種類)、歐盟GDPR原則、個人資料處理、當事人同意、當事人權利介紹、資料保護、資料洩漏處理、未成年人保護等議題之參考要點;並針對部分議題,設計有簡易清單,供參閱者勾選確認。   英國ICO除採取對外發布一般資料保護規則指引外,另有制定數個線上工具,協助企業依其身分別(如資料管理者或資料處理者),選擇線上工具進行自我檢視是否符合歐盟GDPR要求,期以協助英國業者為今(2018)年5月GDPR正式施行,能作更充分的準備。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP