依據美國專利法第314(d)條,美國專利商標局(USPTO)作成多方複審程序(Inter Partes Review, IPR)是否立案(institute)之決定,不得上訴。美國聯邦最高法院於2020年4月20日針對Thryv, Inc. v. Click-to-Call Technologies, LP, et al.一案作成判決,認定USPTO下轄之專利審理暨訴願委員會(Patent Trial and Appeal Board, PTAB)依據美國專利法第315(b)條判斷IPR申請是否逾期不立案之決定,同樣屬於第314(d)條不得上訴之決定。
本案源自2012年Click-to-Call公司就其所有的第5,818,836號美國專利(以下簡稱836號專利)向Thryv公司的前身Ingenio, LLC.提起的專利侵權訴訟,Ingenio公司隨即在收到訴狀後一年內針對836號專利向PTAB提出IPR申請,PTAB認定Ingenio公司的申請並未逾期而立案IPR,並最終做成836號專利無效之決定。Click-to-Call公司不服,認為836號專利之侵權訴訟早在2001年即被提起,即便後因雙方和解而撤回,Ingenio公司的IPR申請早已逾越第315(b)條所規定應於被訴後一年內提出IPR申請之期限,進而對PTAB認定本案申請並未逾期而立案的決定提起上訴。
本案前於2018年經聯邦巡迴上訴法院(CAFC)作成判決,認為PTAB依據第315(b)條認定本案尚未逾期而立案IPR之決定為可上訴,並進而認為即便本案曾經起訴後旋即撤回,當時送達之訴狀仍可觸發IPR申請期限的起算,IPR申請期限應以訴狀是否送達(served with the complaint)為準,與訴訟後續是否撤回無關,PTAB就該訴訟經撤回而認定期限未起算並立案IPR之決定,顯然增加法律所無之規定。
不過在聯邦最高法院的判決中,以7票對2票推翻了聯邦巡迴上訴法院的見解,聯邦最高法院引用Cuozzo Speed Technologies, LLC v. Lee一案的見解,認為依據第314(d)條是否立案IPR之決定為不可上訴,係立法者有意設計,使USPTO得以自我檢視並有效清除不良專利。而第315(b)條的立法本意為減少訴訟與IPR程序重疊的資源浪費,若允許對是否立案之決定上訴顯然無益於本條立法目的之達成。因此聯邦最高法院撤銷聯邦巡迴上訴法院的判決並以無上訴管轄權為由駁回Click-to-Call公司之上訴。
本文為「經濟部產業技術司科技專案成果」
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
美國政府提出新法加強管理軍民兩用技術美國布希政府最近向國會正式提出一個以打擊恐怖主義及大規模毀滅性武器為目的的法案—出口執行法(The Export Enforcement Act of 2007),以期為執法者—美國商務部產業安全局(Bureau of Industry and Security, BIS)提供更有效的工具,防止最具有敏感性的技術或產品落入危險份子手中。 長久以來,美國用以管理敏感性技術與產品的法源是1979年制定的出口管理法(Export Administration Act),該法對軍民兩用的技術與產品,施以出口管制。出口法在2001年失效,同年發生911攻擊事件,因此,布希政府除希望獲得國會重新就出口管理法予以授權外,也希望可以有更強而有力的出口管理權限。不過行政部門迄今未得到國會就出口管理法予以重新授權。 自2001年以來,BIS係依國際緊急情形經濟權力法(International Emergency Economic Powers Act, IEEPA)行使出口管理權限,不過根據IEEPA,美國總統必須每年發布行政令(Executive Order)始能動用出口管理權限,而IEEPA對於違反出口管制規定的處罰也不若出口管理法重,因此,IEEPA除了對執法者造成出口管理的不便的困擾外,寬鬆的處罰也使得美國過去幾年非法技術外移的事件頻傳。 本次布希政府再次提出2007年出口執行法,其內容除了請求國會同意在未來五年再度授權行政部門行使1979年的出口管理法之權限外,其他重要內容尚有:(1)修正1979年的出口管理法之執行與違法規定:除增列構成犯罪之違法出口行為態樣外,並對違法者大幅加重其民刑事處罰。根據修正草案,企業之出口行為若被認定為違法,最高可科處500萬美元或違法出口技術或產品價值之十倍罰金;(2)強化了執法者打擊軍民兩用技術與產品非法出口的職權,明訂商務部特派員擁有海外調查以及秘密調查的權限;(3)對企業所提出之秘密資訊負有保護義務。 整體而言,本法案除了重新授權美國商務部管理軍民兩用技術與產品實施出口管制體系外,同時也代表美國政府於二十一世紀為維護國家安全與處理所面臨之經濟挑戰的長期與根本性改革。目前法案仍須國會討論通過後,始能生效適用。
韓國發布人工智慧基本法韓國政府為支持人工智慧發展與建立人工智慧信任基礎,提升國家競爭力,韓國科學技術情報通訊部(과학기술정보통신부)於2025年1月21日公布《人工智慧發展與建立信任基本法》(인공지능 발전과 신뢰 기반 조성 등에 관한 기본법안,下稱AI基本法),將於2026年1月22日起生效。韓國《AI基本法》為繼歐盟《人工智慧法》(EU Artificial Intelligence Act)之後第二部關注人工智慧的國家級立法,並針對高影響人工智慧(고영향 인공지능)及生成式人工智慧進行規範,促進創新及降低人工智慧風險,將搭配進一步的立法與政策以支持人工智慧產業。 《AI基本法》有以下三個政策方向: 1. 人工智慧基本計畫:由科學技術情報通訊部制定並每三年檢討「人工智慧基本計畫」,經「國家人工智慧委員會」審議後實施,決定產業發展政策、培育人才、健全社會制度等事項。本法並設置人工智慧政策中心及人工智慧安全研究所,提供科學技術情報通訊部所需的研究與分析。 2. 扶持產業發展:以扶持中小企業及新創企業為發展方向,促進產業標準化的基本政策,爭取國際合作及海外發展。 3. 人工智慧倫理與安全性:政府公布人工智慧倫理原則,由相關機構及業者自主成立人工智慧倫理委員會,在政府發布的指引下建立貼近實務面的倫理指引。本法明確要求人工智慧產業必須負擔透明性及安全性義務,政府也推動認驗證制度,以確保人工智慧的可靠性。 韓國《AI基本法》將人工智慧發展方向及社會政策結合,明確要求政府制定人工智慧發展計畫並定期檢討,施行具體措施與設置必要組織,確立政府在人工智慧領域的角色,然產業界對於政府監管力度之意見有所分歧,為《AI基本法》後續相關政策及指引推動種下不確定性,值得持續追蹤相關動態作為我國人工智慧發展策略之參考。
瑞士洛桑管理學院公布《2025年IMD世界競爭力年報》瑞士洛桑管理學院(International Institute for Management Development, IMD)於2025年6月17日發布《2025年IMD世界競爭力年報》(IMD World Competitiveness Yearbook),針對全球69個國家與地區,從「經濟表現」、「政府效能」、「企業效能」及「基礎建設」四大面向進行綜合評比,瑞士、新加坡與香港分列前三,展現其制度穩定性與政策應變能力的優勢。 排名第一的瑞士,擁有強健的制度架構,且其「政府效能」與「基礎建設」表現卓越,然瑞士在「經濟表現」與「企業效能」表現略有下滑,主要與公共採購制度的透明度相關,當地企業反映,公共部門合約對外國投標者開放程度不足,限制市場競爭並影響外資參與。 新加坡「經濟表現」亮眼,使其整體競爭力維持在第二名,然因企業外移嚴重,其「企業效能」由去年的第二名滑落至第八,對未來競爭力構成威脅。 香港由第五名升至第三,四大面向皆有明顯進展,顯示其持續改善投資環境;且香港在企業效能方面表現出色,有效強化其作為全球金融中心的地位。 我國排名第六,較去年上升兩名,展現整體競爭力持續提升。四大面向表現均衡,尤以「經濟表現」與「企業效能」成績亮眼,顯示我國出口動能穩定,企業具備良好轉型能力與國際競爭力,科技產業持續發揮關鍵影響力。「政府效能」維持穩定,財政與稅制制度具備競爭優勢,對營商環境有正面助益。惟在「基礎建設」與社會面向方面,仍面臨人口結構變遷、能源轉型與永續發展等挑戰,需持續強化相關制度與政策配套,以確保長期發展動能。 總體而言,競爭力除經濟與治理外,亦受社會及供應鏈變動影響。未來各國應持續強化治理與創新能力;兼顧社會包容性與產業永續發展,以維持長期競爭力。