日本發布深化與推動開放科學之建言

  日本學術會議所屬「深化與推動開放科學檢討委員會(オープンサイエンスの深化と推進に関する検討委員会)」為深化與推動開放科學發展,於2020年5月28日發布建言(原文為提言)。本建言接續國際間提倡的「資料驅動型科學」、與日本Society5.0政策內「資料驅動型社會」構想,目的在於凸顯研究資料共享概念與共享平台的重要性,梳理現行措施下的問題,並提出政策與制度調適建議。

  建言提出三項觀察。其一,研究論文投稿至期刊出版機關,論文尚未審查通過並發表前,論文本身與經整理之研究資料的著作財產權雖屬於原作者所有,出版機關原則會另與投稿作者約定,作者不得對外公開其研究成果與研究資料,目的在於避免未經審查通過的成果與資料散布,造成錯誤訊息流通。COVID-19疫情蔓延期間,美國國家衛生研究院(National Institutes of Health, NIH)、國立研發法人日本醫療研究開發機構(AMED)等研究資助機構,則依循過往大規模傳染病發生時的慣例,與期刊出版機關等達成協議並發表聲明,只要作者同意釋出,即允許有關論文發表前得先將研究成果與資料與WHO及外界共享,期待藉資料快速公開流通協助對抗疫情。這些措施體現了資料的重要性與共享可能性,但共享後,利用方新取得的資料應如何繼續以適切方式公開,則有賴資料的數位平台機制完備現行作法的不足。其二,資料本身非著作物,不直接受著作權法保護,各國法例亦較少另外賦予資料庫(database)法定權利。日本則在不正競爭防止法增訂「提供予特定對象資料(限定提供データ)」保護制度,定義非法取用原僅授權特定人使用之資料的行為,將落入不當競爭行為的範疇,強化營業與數位資料利用之法定權利保護。其三,近年來,日本公平交易委員會因應Google、Amazon可能運用資料蒐集達成市場壟斷的疑慮,重新檢討其反托拉斯政策,顯示資料利用亦可能牴觸反托拉斯法;歐盟一般資料保護規則(GDPR)的規範強度與密度較日本國內法為高,則讓資料利用涉及個資時,無法僅以日本個資法為標準。資料利用涉及多部法規,增加資料利用者合法使用的難度,從而降低研究者再利用研究資料的意願。

  基於上述觀察,本建言提出以下法制與政策建議:(1)統整不正競爭防止法、個人資料保護法、著作權法等相關法規範,同時考量研究資料本身特性與社會應用途徑,作成指引供外界遵循;(2)國家應資助學術界或進行研發活動之機構,建構得長期蒐整、保存與共享研究資料之平台,協助實現跨領域或跨部門的研究資料融合利用與價值創造;(3)針對研究成果採用的原始樣本(如岩石、土壤、生物、物質等),以及人文社會科學領域研究的原始資料(如文書紀錄、書籍、技術等),建立永久保存之制度。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 日本發布深化與推動開放科學之建言, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8501&no=64&tp=5 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
英國BSI發布自駕車發展與評估控制系統指引

  英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。   指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。

國際海事組織海事安全委員會決議於2025年前制定非強制性自駕船國際章程

  國際海事組織(International Maritime Organization,下稱IMO)於2022年4月20日至29日於線上召開為期9天的海事安全委員會(Maritime Safety Committee,下稱MSC)第105屆例會,會議重點係咸稱之自駕船——亦即海上自動化水面船舶(Maritime Autonomous Surface Ship,下稱MASS)之航行與操作規則。本屆會議總結並延續了MSC近年針對MASS的工作,包括2018年提出MASS實驗框架規範,以及2021年提出MASS法制框架評估等。本屆會議除了賡續規劃MASS的法制路線圖(Roadmap)外,鑒於船舶相關智慧科技快速發展,MSC決議於2025年之前,針對各級MASS制定非強制性(voluntary)之章程及規定後,蒐集各國的實務經驗與意見,再於2027年將其轉為強制性(mandatory)的規定,以於2028年生效並適用於IMO全體會員國。   部分會員國(例如日本)從造船技術出發,建議未來的MASS指南與規範內容應全面覆蓋船舶的設計、建造、系統、設備的功能要求。挪威則建議應按第103屆會議所盤點之法規,優先處理「人員」相關議題,包括船員、船長及遠端操作員的資格,以及當值與行為準則等。韓國則建議,即便是等級最高的全自駕船,亦不可能全面取代人為操作,因此MASS的法制應以「人機協同」為基礎,方能合乎SOLAS公約與IMO促進海上航行安全的目的及宗旨。最後,各國亦擬議將MASS規範優先適用於「貨船」,而非「客船」。本屆會議顯示IMO已加快MASS法制工作的進程並規劃具體之立法期程,我國除了在《無人載具科技創新實驗條例》建立的監理沙盒下已有兩件自駕船實驗案,未來勢必需要對接國際海事規範,航政機關實須提前因應及規劃。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP