日本學術會議所屬「深化與推動開放科學檢討委員會(オープンサイエンスの深化と推進に関する検討委員会)」為深化與推動開放科學發展,於2020年5月28日發布建言(原文為提言)。本建言接續國際間提倡的「資料驅動型科學」、與日本Society5.0政策內「資料驅動型社會」構想,目的在於凸顯研究資料共享概念與共享平台的重要性,梳理現行措施下的問題,並提出政策與制度調適建議。
建言提出三項觀察。其一,研究論文投稿至期刊出版機關,論文尚未審查通過並發表前,論文本身與經整理之研究資料的著作財產權雖屬於原作者所有,出版機關原則會另與投稿作者約定,作者不得對外公開其研究成果與研究資料,目的在於避免未經審查通過的成果與資料散布,造成錯誤訊息流通。COVID-19疫情蔓延期間,美國國家衛生研究院(National Institutes of Health, NIH)、國立研發法人日本醫療研究開發機構(AMED)等研究資助機構,則依循過往大規模傳染病發生時的慣例,與期刊出版機關等達成協議並發表聲明,只要作者同意釋出,即允許有關論文發表前得先將研究成果與資料與WHO及外界共享,期待藉資料快速公開流通協助對抗疫情。這些措施體現了資料的重要性與共享可能性,但共享後,利用方新取得的資料應如何繼續以適切方式公開,則有賴資料的數位平台機制完備現行作法的不足。其二,資料本身非著作物,不直接受著作權法保護,各國法例亦較少另外賦予資料庫(database)法定權利。日本則在不正競爭防止法增訂「提供予特定對象資料(限定提供データ)」保護制度,定義非法取用原僅授權特定人使用之資料的行為,將落入不當競爭行為的範疇,強化營業與數位資料利用之法定權利保護。其三,近年來,日本公平交易委員會因應Google、Amazon可能運用資料蒐集達成市場壟斷的疑慮,重新檢討其反托拉斯政策,顯示資料利用亦可能牴觸反托拉斯法;歐盟一般資料保護規則(GDPR)的規範強度與密度較日本國內法為高,則讓資料利用涉及個資時,無法僅以日本個資法為標準。資料利用涉及多部法規,增加資料利用者合法使用的難度,從而降低研究者再利用研究資料的意願。
基於上述觀察,本建言提出以下法制與政策建議:(1)統整不正競爭防止法、個人資料保護法、著作權法等相關法規範,同時考量研究資料本身特性與社會應用途徑,作成指引供外界遵循;(2)國家應資助學術界或進行研發活動之機構,建構得長期蒐整、保存與共享研究資料之平台,協助實現跨領域或跨部門的研究資料融合利用與價值創造;(3)針對研究成果採用的原始樣本(如岩石、土壤、生物、物質等),以及人文社會科學領域研究的原始資料(如文書紀錄、書籍、技術等),建立永久保存之制度。
本文為「經濟部產業技術司科技專案成果」
依據本(2013)年9月26日中國大陸國家統計局、科學技術部、財政部聯合發布之統計公報顯示,去(2012)年全中國投入在研究與試驗發展(R&D)之經費支出達人民幣(以下同)10,298.4億元,較前(2011)年增加1,611.4億元,成長約18.5%。而大陸地區之研究與試驗發展經費約佔其國內生產總值(GDP)之1.98%,較2011年的1.84%提高0.14個百分點。惟同期(2012年,即民國101年)我國研發經費總計為新台幣4,312.96億元,佔臺灣地區GDP比率為3.07%,較中國大陸1.98%之比率略高。 另據大陸統計公報顯示,在中國大陸10,298.4億元之研發經費內,用於「基礎研究」之支出為498.8億元,比2011年增長21.1%;在「應用研究」之經費則為1,162億元,增長13%;至於「試驗發展」經費支出則為最大宗,達8,637.6億元,增長19.2%。總體來說,大陸地區之基礎研究、應用研究和試驗發展3項,佔其研發經費總支出之比率分別為4.8%、11.3%和83.9%;而臺灣地區則是以基礎研究、應用研究及技術發展等3類為區分,在2011年時分別為9.7%、23.7%及66.6%,說明臺灣地區在基礎與應用研究2部份佔研發經費總支出之比率較中國大陸為高。 然而相關研發經費投入至後續產出專利、運用,能否有效結合,或因而強化國家競爭力、減少需用單位間之落差,已是兩岸或其他國家所關切的焦點。因此,為利知己知彼,除了瞭解競爭國家之資源投入情形外,其研發成果相關運用情形等,亦實值得我們後續觀察、研究。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
全球最大無人機製造商DJI在美對科技新興公司Yuneec 提起專利侵權訴訟SZ DJI Technology Co.和DJI Europe B.V.(下簡稱DJI)來自中國,是世界上最大的無人機製造商,DJI向加州中區聯邦地區法院起訴科技新興公司Yuneec Intemational Co.Ltd.和Yuneec Usa Inc.(下簡稱Yuneec)涉嫌侵害其跟踪移動目標系統,和可拆卸支架360度攝影機鏡頭的兩項專利,且請求法院發布禁制令,以阻止進一步銷售,並請求損害賠償。 這兩項專利,一為美國專利編號9164506“跟踪移動目標系統”,一旦遠端操作員指定了目標,無人機會自動跟蹤並保持相機拍攝目標;另一個專利為美國專利編號9280038,可讓無人機的照相機旋轉360度進行拍攝,並連接到分離的手持式攝像機,DJI強調公司多年來為開發該產品投注相當的時間和資源。 總部位於香港的Yuneec在一月的消費電子展(Consumer Electronics Show)上引起轟動,Yuneec使用GPS感知技術避免危險區域如機場,媒體於消費展後的報導稱Yuneec的無人駕駛飛機已經威脅到DJI市場上的地位。 Yuneec在5月25日向加州中區聯邦地區法院提起反訴認為其無侵權,並表示目標跟踪是一個抽象的概念不能以此申請專利,“跟踪是一個古老的概念” Yuneec的代表律師威爾遜表示,“該506專利並不是要揭露新的跟踪技術,相反的它只是描述並使用眾所周知的無人機的跟踪技術“。而另項專利可拆卸的支架360度攝影機鏡頭,如GoPros已有類似的產品,甚至遠比DJI的產品還早之前。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
國際保險公司探討奈米保險機制可行性特定奈米科技經歷研發階段過後,所獲致的成熟技術產品,要邁向市場商業化階段,能否真正成功,取決於市場消費大眾能否具有信心願意採用。而奈米科技由於新興發展存有未知之不確定風險,所以有論者開始規劃研擬,引進責任保險機制,藉由責任風險分散之功能,期望解決面對不確定風險時,能夠足以妥適因應。 依據國際最具份量之瑞士再保公司(Swiss Re) 對於奈米科技之保險機制,2008年出版「奈米科技:微小物質,未知風險(Nanotechnology--Small Matter, Many Unknowns:The Insurers' Perspective)」研究報告 ,其中明文點出,保險業(Insurance Industry)之核心業務即為移轉風險(Transfer of Risk),由保險公司(Insurer)經過精算程序後收取一定費用,適時移轉相關風險,並產生填補功能。 然而,保險業對於可藉由保險機制所分散之風險,亦有其極限範圍,如果超過以下三原則者,則會被認為超出可承擔風險範圍,屬保險業無力去承擔者,所以保險機制之引進將不具可行性: (1)風險發生之可能機率與發生嚴重程度,現行實務沒有可行方式能加以評估者。 (2)當危害產生時,所造成之影響為同時擴及太多公司、太多產業領域、或太廣的地理區域者。 (3)有可能產生的巨大危害事件,已超過私領域保險業所能承受之範圍者。 此外,為確保未來得以永續經營,保險公司對於願意承保之可保險性(Insurability)端視對於以下各因素性質之評估: (1)可加以評估性(Accessibility):對於所產生之損害係屬可評估,並得以加以計量化、允許訂出價格者(be Quantifiable to Allow Pricing)。 (2)無可事先安排者(Randomness):對於保險事故之發生,必須是不可預測者,並且其所發生必須獨立於被保險者本身主觀意志(the Will of the Insured)之外。 (3)風險相互團體性(Mutuality):相關保險者必須基於同時參加並組成共同團體性,藉以達到分擔分散相關風險性。 (4)經濟上可行性(Economic Feasibility):必須使私人保險公司藉由收取適宜保費,便得以支付對等之賠償費用,可以確保業務經營得以永續持續下去。 綜上所述,可以明瞭並非所有風險,保險公司均願意承保而能達到分散風險者,對於風險必須是可預測性並有承保價值,保險公司本身具有商業機制,依據精算原則確定願意承保之費用,此才可謂實務上可行,對於奈米科技引進保險機制之衡量思考,也當是如此。