歐盟執委會發布2020歐洲創新計分板報告

  歐盟執委會(European Commission, EC)於2020年6月23日發布2020歐洲創新計分板報告(European Innovation Scoreboard 2020, EIS),其以「整體結構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大指標評比歐盟成員國以及其他歐洲國家的研究與創新績效、創新環境等;各指標下再細分為10個次標和27個子標,例如人力資源、友善創新環境建構、政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。

  歐洲計分板將歐盟會員國創新表現分為四組,以2020年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含丹麥、芬蘭、荷蘭、瑞典等國,為創新表現大於歐盟成員國平均創新度20%以上者;(2)優秀創新者(Strong Innovators):包含奧地利、比利時、法國、德國、葡萄牙等,創新表現大於歐盟成員國平均者;(3)中等創新者(Moderate Innovators):包含希臘、匈牙利、義大利、西班牙、波蘭等國,其創新表現小於歐盟平均者;以及最後一組(4)適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞,為創新表現低於歐盟平均之50%。

  此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在創新研究體系領域,表現最好者為盧森堡、丹麥、荷蘭;中小企業帶領創新則以葡萄牙和芬蘭表現最佳;創新協力合作(Innovation linkages and collaboration)以奧地利、比利時、芬蘭最佳。而在全球綜合創新表現上,南韓為創新表現最佳,其向加入專利合作條約(Patent Cooperation Treaty, PCT)國家提交之專利申請數、商標申請數、設計專利申請數量最多,分別為世界其他先進國家的2-10倍不等(申請數量以每十億GDP為一單位計算);其次是加拿大、澳洲、日本、歐盟、美國與中國。歐盟已是第二年超越美國,並在其他主要競爭者中(美國、中國、巴西、俄羅斯、南非等)保持優先,唯優勢差距開始減少。此外,EIS跨年度分析評比,是以歐盟2012年創新表現為基準。報告中將歐盟2012年之創新表現預設為100,在2012-2019年間,中國的創新表現評分自79成長至97,而美國則在93-99間穩定變動;特別是2019和2020兩年,美國創新表現均維持在99,而無顯著之進步。故報告預測若依此趨勢,中國創新表現將在近年超越美國。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布2020歐洲創新計分板報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8505&no=57&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
法國參議院關於資料在地化(Data Localization)之修法提案

  為實現歐洲公民資料一致保護水準之期待,全面革新歐盟各會員國資料保護規範的一般資料保護規則(General Data Protection Regulation, GDPR),已於2016年4月14日由歐洲議會正式通過,且將在2018年5月25日生效,該規則異於資料保護指令(Data Protection Directive,95/46/EC)之處,在於規則無待各會員內國法化,得以直接適用,然而生效前的過渡期間,歐盟各國為因應新修正規則預作準備;近期,法國政府在「數位共和國」(République Numérique)法案中,欲修改現行關於資料保護之法律,如法國資料保護法(Loi Informatique et Libertes Act N°78-17 Of 6 January 1978),以達歐盟資料保護水準。   法國國民議會(Assemblée nationale)於2016年1月一讀通過,參議院(Sénat)隨後在5月提出修正案中第26 條之一(Article 26 bis A),要求個人資料應儲存於歐盟或法國境內的資料中心,同時為符合與歐盟的國際承諾會員國,並禁止個人資料傳輸至非歐盟的第三國,而參議院修法理由是為了確保法國規範符合歐盟資料保護水準,並依據先前歐盟法院關於安全港無效之判決的結果為修訂。  然而,資料在地化條款目前仍不明確,但此規定恐對資料傳輸設下更多限制;雖然在GDPR第23條規範關於各國決定限制權利和義務的範圍,資料傳輸至第三國並不在此列,故為加速修法程序,聯合調解委員會(Commission mixte paritaire)將於近期內審查調整,國民議會和參議院的代表仍能針對此條款提出意見以達成最終共識,後續修法值得關注。

FCC就電信轉接服務相關法規之適用發布命令

  1990 美國身障礙法要求 FCC 確保在合理的情況下,有聽覺或語言障礙人士都能夠接近使用 電信轉接服務 ( telecommunication relay services , TRS ) 。 TRS 的提供使有聽覺或語言障礙者得以能夠利用電信設施與其他人溝通,而這樣的溝通過程必須是在有受過訓練之通訊輔助人 (communication assistant , CA) 的協助方能夠完成。 CA 會負責交換使用各種不同輔助通訊裝置 ( 例如 TTY 或電腦 ) 者與使用語音電話者間的通訊。為了減少因為通訊轉換所造成的中斷以及為了使該通訊在功能上幾近等同於語音通訊, TRS 相關規定要求 CA 必須等待至少 10 分鐘後,方能將該筆通訊移轉給另一個 CA 。然而,此規則應用於影像轉接服務 (Video Relay Serices) 時,卻引發相關疑義,例如當發話端使用 ASL(American Sign Language ,美國手語 ) 時, VRS CA 可能會因為使用的手語系統的不同而不能夠正確地了解發話端的意思,因此最好的情況時,可以立即將該筆通訊移轉給另外一個 CA 處理。於此情況下, FCC 於 16 日所發布的命令 (Order) 中表示,考量通訊本身的效率性, CA 可以將通訊移轉給另一名 CA 處理,而不必等待至少 10 分鐘後才將該通訊轉出去。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

日本政府將於東京都及愛知縣成立「自駕車實證一站式中心」

  日本政府於2017年9月4日所召開之國家戰略特區區域會議(下稱戰略區域會議),決定由政府、東京都及愛知縣,共同成立「自駕車實證一站式中心」,協助企業及大學之自駕車相關實證研究。在自動駕駛實驗開始前,中心接受道路交通法等各程序相關諮詢,必要時可將相關程序以其他方式置換,將複數程序整合為一,推動相關實驗。   戰略區域會議並決定將窗口設置於東京都及愛知縣,欲進行實驗之企業可至前述窗口諮詢,東京都及愛知縣應與相關省廳及所管轄之警察、交通部門進行協調,並將所需之資訊彙整後回覆予企業,如此一來,企業可減輕實驗前繁瑣程序所帶來之負擔,進而降低啟動實驗之門檻。   東京都小池百合子知事於會後向記者們表示「自駕系統於汽車產業中,已是國家間之競爭」,且東京都將致力於「沙盒特區」體制之推動,於必要時可暫時停止相關現行法規之限制。愛知縣大村秀章知事則期待「透過實證實驗累積技術,促使愛知縣能維持引領世界汽車產業聚集地之地位」。   針對上述特區的設置,未來實際落實情況以及法規排除作法與範圍,值得我國持續投入關注。

TOP