瑞士洛桑管理學院(International Institute for Management Development, IMD)於2020年6月發布2020世界競爭力評比報告(IMD’s 2020 World Competitiveness Ranking 2020 results)。此份報告共評比 63 個經濟體,全球競爭力前5名依序為新加坡、丹麥、瑞士、荷蘭與香港;其他重要經濟體之排名包含加拿大為第8、美國第10、臺灣第11、中國第20、南韓第23與日本第34。
2020世界競爭力評比以有「經濟表現」(Economic Performance)、「政府效能」(Government efficiency)「企業效能」(Government Efficiency)和「基礎建設」(Infrastructure)四大評比指標,旗下再細分為340個子標,例如人均GDP、對外直接投資佔GDP比例、國際貿易、國際投資、財政、勞動力市場、顧客滿意度受企業重視程度、健康與環境基礎建設、研發人力比例、研發總支出占GDP比例等。此次評比中,可以看出小型經濟體(如新加坡、香港、丹麥等)因容易凝聚社會共識,表現較為優異。而排名退步的國家如中國和美國,乃因兩國之間貿易戰損害經濟表現(美國從2019年第3掉至今年第10,中國自14掉至20)。香港亦從2019年的第2排到第5,其經濟表現下降乃因社會動盪以及中國貿易戰影響。
我國在此次評比中表現優異,綜合排名第11名,較2019年上升 5 名;且我國在亞太地區中高居第 3名,僅次於新加坡和香港,為 2016 年以來最佳成績。評比指標之政府效能、企業效能、基礎建設排名均有進步,其中政府效能排名全球第9,首次進入世界前10名。
本文為「經濟部產業技術司科技專案成果」
相較於綠色採購(Green public procurement, GPP)所揭櫫的於採購產品、服務或勞務時選擇於其生命週期中對於環境造成衝擊較小者,循環型採購(Circular Procurement)可說是在綠色採購的基礎上,加入循環經濟(Circular Economy)強調最大化資源利用效率的概念,使對於環境的影響與衝擊並非唯一的標準,而應考量產品、服務或勞務對資源的利用效益。 歐盟執委會於2017年10月發布《循環經濟公共採購範例與指引》(Public Procurement for A Circular Economy: Good Practice and Guidance),其中指出循環型採購的意義在於促進歐盟邁向循環經濟轉型,藉由循環型採購所創造的需求,達成循環經濟所強調封閉資源循環(Closing the Loop)以最大化資源利用效率的概念,並肯認政府採購為推動循環經濟轉型的重要誘因之一。 具體的循環型採購做法,包含選擇具高度資源循環利用性的產品,例如可維修、再利用或利於回收再循環的產品,以及以採購服務代替採購硬體等,透過循環型採購對於資源利用效率的重視,支持符合循環經濟概念的產品設計、研發技術與商業模式等創新成果,與提出這些解決方案的企業或團隊,進而達成促進社會邁向循環經濟轉型與永續發展的目標。
日本發布資料素養指南之資料處理篇,旨在促使企業理解便於活用於數位技術與服務的資料管理方法日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料處理篇,主要為促使企業理解有利活用於數位技術與服務的資料管理方法。 《指南》資料處理篇指出,資料的生命週期涵蓋資料設計、資料蒐集、外部資料連動、資料整合、資料處理、資料提供、資料累積以及資料銷毀等不同階段。《指南》建議在資料生命週期的各階段,盡可能的不要有人類的介入。舉例而言,資料蒐集可以透過感測器或系統進行。該建議的目的在於,人類介入資料生命週期,僅會引起輸入錯誤或是操作錯誤等風險。 此外,《指南》亦於資料處理篇中針對資料治理給出四點建議,分別如下: (一)資料是企業的重要資產,因此應重視其管理方式。管理方式涵蓋帳號密碼、透過生物辨識技術進行資料接觸管理、Log檔之取得、系統設定禁止使用USB等方式。 (二)資料治理的重點在於對人政策。除了向員工強調不要開啟不明網站及釣魚信件以外,企業亦應與員工建立堅實的信賴關係。 (三)資料公開或流通時應注意,如果不希望提供後的資料被二次利用,應於雙方間的資料利用契約中敘明。此外,由於資料具備易於複製及傳輸的特性,因此在公開或流通資料時,應考量適用諸如時戳技術等可確保資料原本性或使資料無法被竄改的數位技術。 (四)資料銷毀如果僅是單純的刪除資料,有透過數位技術找回資料的可能性。因此,除可評估委由專門進行資料銷毀服務的公司協助以外,由於銷毀資料經由個人電腦外洩之事件時有所聞,故亦應留意個人電腦之資料管理。 我國企業如欲將資料活用於數位技術或服務,除可參考日本所發布之《指南》資料處理篇以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,以建立自身資料處理流程,進而強化資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟執委會提出《淨零產業法》草案,促進歐盟淨零技術的發展歐盟執委會(European Commission)於2023年3月16日提出《淨零產業法(Net-Zero Industry Act)》草案,以擴大歐盟潔淨技術的製造,並為歐盟的潔淨能源轉型作好準備,同時亦為綠色政綱產業計畫的一部分。其中適用之淨零技術則包含太陽光電和太陽熱能、陸域風電和離岸再生能源、電池和儲能設備、熱泵和地熱能、電解槽和燃料電池、沼氣和生質甲烷、碳捕捉利用和封存、電網技術、永續替代燃料、少量核廢的新興核能、小型反應爐,以及相關的先進燃料。而推動措施之重點如下: (1)建立有利發展的環境 將加強資訊的流通、減少成立專案的行政成本、簡化核准許可程序,以及設立單一聯繫窗口(One Stop Shop),以發展利於投資淨零技術的環境。另外,也將優先考慮能加強歐盟工業韌性和競爭性的淨零排放策略計畫,例如能安全儲存被捕捉之二氧化碳的場址規劃和建置。 (2)加速二氧化碳的捕捉 設定歐盟2030年的目標-二氧化碳儲存場址每年的注入容量應達到50百萬公噸(Mt),並要求歐盟石油和天然氣的生產業者需按其產量之比例做出貢獻,以促進二氧化碳捕捉和封存的發展,作為經濟上可行的氣候解決方案,特別是對於難以減少排放的能源密集產業。 (3)促進業者進入淨零市場 應在公共的採購和拍賣中,要求政府需考量產品的永續性和韌性並建立標準,促進公私部門對於淨零技術的需求,鼓勵業者們發展淨零技術,以提升該技術的供應多樣性。 (4)提升技能 設立專門的歐盟淨零學院,為潔淨能源轉型提供成熟的勞動力;並將與成員國、產業和其他利害關係人合作,設計培訓課程,重新訓練以及提升相關人才的技術能力。 (5)推動創新 支持成員國設立監理沙盒,在靈活的監管條件下對於新興的淨零排放技術進行測試以促進創新。 (6)設置淨零歐洲平台 建立淨零歐洲平台(Net-Zero Europe Platform)協助歐盟執委會和成員國進行合作和交換資訊。並且,透過該平台確認計畫之財務需求、瓶頸和最佳方案,以促進淨零相關產業的投資。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。