美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項:

一、於經過潛在風險評估後,以適當且符合目的之方法利用;

二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求;

三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。

四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。

五、AI進行測試時應同時考量其未來利用上可預見之風險。

六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。

七、AI之建立目的、限制與設計之輸出項目,應文件化。

八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。

九、持續不定期檢測AI,以確保其符合當初建置之目的。

十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國情報體系發布「情報體系運用人工智慧倫理架構」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8520&no=55&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
歐盟執委會委員宣布將對電子商務領域進行反壟斷調查

  掌管競爭事務的歐盟執委會委員Margrethe Vestager於3月26日在柏林記者會上宣布,接下來的競爭調查將鎖定在電子商務領域。這項調查將涵蓋歐盟所有會員國,旨在調查是否有公司透過契約或其他障礙,限制消費者在歐洲境內進行跨境交易。縱使越來越多的歐洲商品和服務是經由網路來交易,歐盟內部的跨境線上交易卻成長緩慢。造成此現象的原因可能是由於語言隔閡、消費者喜好及會原國間法令的差異。然而,亦有跡象顯示,有些公司會採取相關措施來限制跨境線上交易。   因此,對於該領域的調查重心會放在如何加強識別及因應這些限制跨境交易的措施;以配合執委會的目標: 創造一個相連的數位單一市場。執委會委員Margrethe Vestager會在接下來的星期提出該提案於委員會。   歐洲消費者屬於線上服務之狂熱使用者。在2014年,約有半數的歐洲消費者在線上消費;然而,在這半數內,僅有15% 的線上消費者是向歐盟其他會員國之業者購買。這顯示在歐盟境內,電子商務仍然有巨大的跨境障礙。例如: 技術障礙,如地理隔閡,將限制消費者從其所在地或使用其信用卡進入特定網站。   執委會委員Vestager因此決定向委員會提出對於電子商務領域的競爭調查,以促進執委會實現單一數位市場的目標。   該調查是執委會企圖把歐盟分裂的線上市場整合為單一數位市場的策略之一。經過分析後,若執委會認定有競爭爭議,會開啟案件調查,以確保電子商務領域已遵守禁止限制商業行為及濫用獨占地位之歐盟法規(歐盟運作條約第101條和第102條)

美國聯邦貿易委員會插手企業資訊安全引起爭議

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2013年8月29日對位於亞特蘭大的一家小型醫療測試實驗室LabMD提出行政控訴,指控LabMD怠於以合理的保護措施保障消費者的資訊(包括醫療資訊)安全。FTC因此依據聯邦貿易委員會法(Federal Trade Commission Act, FTC Act)第5條展開調查,並要求LabMD需強化其資安防護機制(In the Matter of LabMD, Inc., a corporation, Docket No. 9357)。   根據FTC網站揭示的資訊,LabMD因為使用了點對點(Peer to Peer)資料分享軟體,讓客戶的資料暴露於資訊安全風險中;有將近10,000名客戶的醫療及其他敏感性資料因此被外洩,至少500名消費者被身份盜用。   不過,LabMD反指控FTC,認為國會並沒有授權FTC處理個人資料保護或一般企業資訊安全標準之議題,FTC的調查屬濫權,無理由擴張了聯邦貿易委員會法第5條的授權。   本案的癥結聚焦於,FTC利用了對聯邦貿易委員會法第5條「不公平或欺騙之商業行為(unfair or deceptive acts)」的文字解釋,涉嫌將其組織定位從反托拉斯法「執法者」的角色轉換到(正當商業行為)「法規與標準制訂者」的角色,逸脫了法律與判例的約束。由於FTC過去曾對許多大型科技公司(如google)提出類似的控訴,許多公司都在關注本案後續的發展。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

新加坡個人資料保護委員會發布資料保護專員之職能與培訓準則

  新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2019年7月17日發布資料保護專員之職能與培訓準則。基於新加坡個人資料保護法(Personal Data Protection Act 2012, PDPA)明文規範非公務機關必須設立至少一名資料保護長(Data Protection Officer, DPO),負責個資保護政策之制定落實、風險評鑑及個資事故處理等工作。為了使資料保護專業人員增強能力並於企業組織有效履行其職責,新加坡個人資料保護委員會就此特別發布此準則,將資料保護專員分為三種工作職能,九項專業能力,進而規劃相關培訓課程。   此準則使企業組織能就工作職能聘僱合適之資料保護專員,亦使相關專業人員能掌握清晰之職業生涯,確定自我能力與培訓課程之落差,進而調整有效實施組織之個人資料保護管理政策與流程。其分為資料保護專員、資料保護長、區域資料保護長,依據工作職能與職責區分如下: 一、 資料保護專員 需監視與評估組織之個人資料保護管理政策與程序,並確保其遵循新加坡個人資料保護法。 識別個人資料之風險,並提出風險管控之措施。 提供組織個人資料保護政策之實施與實踐證據。 定期檢視審核,分析現況並矯正改善。 識別並規劃利害關係人之需求與利益。 二、 資料保護長 制定並審查個人資料管理計劃。 根據組織職能,視需求與流程,執行個人資料保護與風險評鑑,並解決相關業務風險。 制定培訓計劃,舉辦個人資料保護政策與流程之教育訓練。 確保組織內部個人資料保護之意識。 根據業務營運與個資法遵要求之落差評估,並建立合規性流程。 透過客戶對隱私與個人資料保護之要求,做為日後促進資料創新之實施。 三、 區域資料保護長 監督資料傳輸活動,並提供個人資料保護法之領導指南。 建立區域創新之資料保護策略。 減少區域內之個資事故。 於資料創新之運用提供戰略性,為組織創造業務價值。 評估新興趨勢與科技,如隱私增強技術、雲端運算、區塊鏈、網絡安全之風險與可行性。   針對上述工作職能與職責,結合所需之專業能力,包括個人資料管理、風險評鑑管理、個資事故緊急應變、利害關係人管理、個人資料稽核認證、個人資料治理、個人資料保護之倫理、資料共享與創新思維,規劃基礎個人資料保護相關課程與進階資料創新課程,使其個人資料保護制度更專業具有規模。目前我國對於資料保護專員並無相關立法規範,若未來修法新加坡個人資料保護委員會之做法亦值參酌。

TOP