美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項:
一、於經過潛在風險評估後,以適當且符合目的之方法利用;
二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求;
三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。
四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。
五、AI進行測試時應同時考量其未來利用上可預見之風險。
六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。
七、AI之建立目的、限制與設計之輸出項目,應文件化。
八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。
九、持續不定期檢測AI,以確保其符合當初建置之目的。
十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。
本文為「經濟部產業技術司科技專案成果」
2007年11月,日本京都大學以山中伸弥教授為首之研究團隊,發表了成功讓從人類臉部皮膚採取之纖維母細胞(fibroblast)轉形成誘導多能性幹細胞(induced pluripotent stem cell,以下簡稱iPS細胞)之案例,展現出日本目前在iPS細胞研究領域中所佔據的領先地位。而在看到京都大學研究團隊在iPS細胞研究上的卓越成果,並認知到國際間在此領域上的激烈競爭,日本文部科學省在2007年12月22日公佈了「加速iPS細胞研究之總合戰略」(iPS細胞(人工多能性幹細胞)研究等の加速に向けた総合戦略,以下簡稱總合戰略),其中提出構築整合日本全國之研究推動體制、投入充足之研究經費與確保智慧財產權之取得等具體方案,希望能藉此來推動日本iPS細胞研究之加速進展。之後在2008年3月18日,文部科學省又公佈了「有關加速iPS細胞研究之總合戰略的具體化」(iPS細胞(人工多能性幹細胞)研究等の加速に向けた総合戦略の具体化について),其中除整理截至當時為止的總合戰略實施情況,也具體點明在2008年度會採取的iPS細胞研究具體推動方案。 總合戰略中較重要的規劃有:文部科學省支援京都大學設立「iPS細胞研究中心」(iPS細胞研究センター),作為日本推動相關研究之核心研究組織;將iPS細胞之相關研究列入「戰略型創造研究推進事業」(CREST)之研究補助計畫中,公開相關研究計畫,提供研究經費來推動其研究之發展;文部科學省透過獨立行政法人科學技術振興機構,派遣知悉iPS細胞研究的專任智財權專家到京都大學支援,協助其取得iPS細胞相關專利。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。
營業秘密管理概要 雲端運算所涉法律議題雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。 雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。 雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。