美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項:

一、於經過潛在風險評估後,以適當且符合目的之方法利用;

二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求;

三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。

四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。

五、AI進行測試時應同時考量其未來利用上可預見之風險。

六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。

七、AI之建立目的、限制與設計之輸出項目,應文件化。

八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。

九、持續不定期檢測AI,以確保其符合當初建置之目的。

十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國情報體系發布「情報體系運用人工智慧倫理架構」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8520&no=57&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
OTT影音發展與著作權-以英國為例

美國通訊委員會拍賣位於700MHz頻段之頻譜

  美國聯邦通訊委員會(Federal Communications Commission, FCC)預計於2008年1月24日開始Action 73之頻譜拍賣程序,以釋出位於700MHz頻段之頻譜,此一頻譜拍賣程序預計將為期數週甚或數月。   根據規劃,美國政府將在2009年年初完成無線廣播電視數位化,屆時廣播電視業者將繳回目前使用之700MHz頻段。又由於此一頻段之電波具有傳輸距離遠與穿透力強之特質,此次之頻譜拍賣活動廣受各方業者矚目,符合競標資格之業者包括電信業者、網路服務提供業者、有線電視業者及衛星電視業者,如AT&T、Verizon Wireless、Google、EchoStar Communications及Cablevision Systems等。據估計,此一頻譜拍賣所得之競標價格可能將會突破百億美元。   此次拍賣之頻譜包括5個頻段,每一個頻段的拍賣規則與用途均有所不同。其中D頻段必須與公共安全機構共用,未來得標者必須與公共安全機構溝通並達成協議,其所建立之全國性網路在緊急狀況發生時,亦必須優先提供公共安全相關機構使用。職是之故,D頻段之競標價格目前仍遠低於聯邦通訊委員會所開出之底價,未來若無業者出價達競標底價,則聯邦通訊委員會將更改底價與競標規則後,重新開放競標。

華盛頓橄欖球隊(D.C. NFL)新商標命名充滿變數

  華盛頓橄欖球隊(Washington Football Team,簡稱D.C. NFL)原名為華盛頓紅皮隊(Washington Redskins),其名稱”Redskins”因具有種族歧視含意,一直以來都充滿爭議,雖然在漫長的法律程序中,成功的維護了他們的”Redskins”商標,然最終仍不敵輿論的壓力,在2020年7月放棄了這個已使用87年之久的商標。   如何為球隊重新命名一個品牌名稱以替代那悠久且著名的原品牌名稱,且新名稱要能夠讓球迷具有認同感,對球隊來說本就不是件容易的事,何況還需要考慮到9月即將開始的NFL(The National Football League)賽季,這更名時程看來就顯得更加緊迫。除了考量到NFL為全球性的賽事,商標命名時所需考量的市場變成全球市場而使這任務更顯艱鉅之外,現在球隊將因為其球迷的行為,使得其新品牌的命名橫添變數。   自1980年來即是球隊粉絲的菲利浦•馬丁•麥考利(Philip Martin McCaulay),已經留意到球隊更名的可能性,近年將可能的名稱先申請商標,除了華盛頓勇士隊(Washington Warriors)外,還包含華盛頓紅狼(Washington Red Wolves)、華盛頓紀念碑(Washington Monuments)、華盛頓熊貓(Washington Pandas)等多達40個商標,而且從美國專利商標局(United States Patent and Trademark Office)資料,麥考利顯然不是唯一一位這樣做的人,究竟是要取得他人的授權,或是經過漫長的命名流程,面對9月就要到來的賽季,已經沒有太多時間留給球隊考慮。   隨著時間變遷,商標法中妨害公序良俗的認定亦會改變,因此品牌長期經營亦須時時檢視該商標在當下的涵義,及早變更因應的方向。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP