美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項:

一、於經過潛在風險評估後,以適當且符合目的之方法利用;

二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求;

三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。

四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。

五、AI進行測試時應同時考量其未來利用上可預見之風險。

六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。

七、AI之建立目的、限制與設計之輸出項目,應文件化。

八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。

九、持續不定期檢測AI,以確保其符合當初建置之目的。

十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國情報體系發布「情報體系運用人工智慧倫理架構」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8520&no=57&tp=1 (最後瀏覽日:2025/12/18)
引註此篇文章
你可能還會想看
美國聯邦巡迴上訴法院判決 FCC無權要求網路中立性

  2010年4月6日美國聯邦哥倫比亞巡迴上訴法院於Comcast v. FCC一案中,判決美國聯邦通訊傳播委員會(FCC)要求網路服務供應商(ISP )對所有形式資料傳輸一視同仁的「網路中立性」要求係逾越權限,有違法律保留原則。此裁判將為美國大型網路內容提供業者(ICP)的經營模式及網路使用者上網習慣投下震撼彈。   網路中立性(Net Neutrality)係指同一ISP應公平地處理所有網路服務,不得因頻寬需求而有差別待遇。查原因案件乃業者Comcast禁止某些用戶透過網路點對點(peer-to-peer)的方式,傳輸大型影音檔案,其認為用戶這種做法會佔用過多頻寬,拖累其他用戶的網路速度;FCC則認為Comcast此舉違反了網路中立性。   在判決書中,哥倫比亞巡迴上訴法院援引判決先例(stare decisis),認為立法者課予FCC必須對全美人民提供一「公平、有效率、公正分配」的廣電服務。惟本案FCC擅以立法者未明確授權的網路中立性作為規制準則,逾越其管制權限而違法。   FCC發言人Jen Howard表示:「法院沒有道理否定保障網路自由與開放的重要性,也不該阻止其他可促成這個重要目的的方法。」此判決對諸多大力提倡網路中立性的大型ICP業者,無疑是一大打擊;ISP將來也可能對消費者依照資料傳輸流量分級收費(即tiered service),形成新的網路服務發展型態。FCC目前正極力爭取立法者通過「網路中立性法案」尋求管制的合法性,後續發展值得注意。

美國聯邦通訊管理委員會對LPTV的新管制措施

  為了確保農村地區低功率電視(LPTV)播送的服務,與協助該等地區傳輸數位訊號,美國聯邦通訊委員會(FCC)決議從2009年8月25日起,不再接受新的類比傳輸運用與設備建置之申請,只允許新的數位低功率電視(new digital-only LPTV)及其有關之電視訊號轉換站的設置申請。此申請機會將限於特定區域,以及採行「先申請先服務」(first-come, first-served)的處理程序。此外,針對全國性的核發執照申請,則於2010年1月25日開始受理。   低功率電視起源於1982年,係FCC為了地方導向、實踐表意自由權利與促進文化多樣性,而在小型社區允許低功率電視執照擁有者得享有「次級性頻譜使用權」(secondary spectrum priority),於VHF(2-13)或UHF(14-51)頻段中,提供電視節目播送之服務。   根據2005年聯邦赤字削減法(Federal Deficit Reduction Act of 2005)規定,美國已於2009年6月12日全面停播類比訊號節目,改以數位訊號播送,但該法並未規範低功率電視台播送訊號的數位化時程,故有關既有低功率電視相關之管制亦須一併修訂,方能達到全數位化的視聽環境目標。

2015年世界智慧財產報告:突破創新與經濟成長

  在一片低迷的全球經濟成長中,2015年11月11日世界智慧財產權組織(WIPO),公布了最新的「世界智慧財產報告:突破創新與經濟成長( World Intellectual Property Report: Breakthrough Innovation and Economic Growth)」,探討知識產權的角色與創新及經濟成長之關連,並鎖定在突破性創新之影響。該報告除討論具代表性歷史創新技術,另也探討當今具有潛在突破性發展之創新技術,同時敦促各國政府及企業,應增加此三領域創新技術相關之投資。   在過去300年來的創新技術發展,已經觸及人類活動的各個層面,並改變了世界的經濟結構。依據2015年WIPO報告,顯示出三領域歷史創新技術如何觸發當時新的企業活動:即飛機、抗生素和半導體。該報告考量到創新驅動成長及未來展望,另探究了三領域具有潛在突破性發展之當今技術:即3D列印、奈米和機器人技術。調查報告也顯示,日本和美國正帶領著一小群國家,推動此三領域創新技術進行突破研究,正因此三領域前瞻技術,掌握著推動未來經濟增長之潛力。   朝向工業化發展的新興中等收入國家中國大陸,自2005年以來在3D列印和機器人領域的專利申請量占全球四分之一以上,為全球國家中比率最高;在奈米技術方面,中國大陸專利申請人占全球近15%,是第3大申請國,但與其他資深創新國家不同的是,中國大陸的大學和公立研究機構申請案所占比例相當高。   WIPO報告強調,創新生態系統的成功要素有三:政府資助科學技術研究,並協助具前景技術從實驗室走到商品化階段;透過充滿活力的金融市場和健全的法規,以及鼓勵企業創新來加強市場競爭力;促進公、私部門創新單位的連結溝通流暢。   該報告亦說明大學和公立研究機構與創新如何日形密切,和傳統飛機、抗生素和半導體領域相較,學研機構在3D列印、奈米技術和機器人領域的專利申請所占比例較高,尤其是在奈米技術領域,全球的學術機構申請人約占四分之一。另外著作權在技術創新也變得更加常見且緊密相關,包括電腦軟體納入著作權保護標的,及3D物品設計和電腦IC晶片設計等的任何形式數位表達之保護。   WIPO「世界智慧財產報告」每兩年發行一次,每期的重點放在不同的IP領域新趨勢,先前的報告已探討「品牌在全球市場的角色(the role that brands play in a global marketplace)」及「不斷變化的創新(the changing face of innovatio)」。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP