全球創新指數(GII)評估COVID-19對於全球創新的影響

  全球創新指數(Global Innovation Index,簡稱GII)為世界智慧財產權組織(WIPO)與歐洲工商管理學院(INSEAD)等單位,共同衡量全球經濟創新績效之參考指標,於今年(2020)9月2日所發佈的全球創新指數顯示,COVID-19嚴重的阻礙全球創新的發展,但卻也對於特定領域(如醫療衛生)帶來新的創新契機。

  今年與2009年(全球經濟危機時)相比,世界金融體系運作仍保持平穩,但用於資助創新型企業的資金,由於全球投資者對於疫情影響新創企業營利表現擔憂,資金的投入也連帶受到影響。而在創新融資方面,鎖定新創早期階段投資的創投公司為確保日後競爭力,轉向對當今熱門標的(如生命科學等)等進行投資,若屬於研發密集型新創企業(研發時間較長)及非投資熱點(區域)的企業,投資方面則所受疫情衝擊較大。

  觀察全球主要國家,雖然皆制訂相關補助計劃用以緩解因疫情所帶來之衝擊,例如中短期欲透過貸款擔保爲企業提供支持。然而,這些補助措施並非直接爲創新和新創企業提供資金。儘管如此,專家對於全球科學和創新受COVID-19的影響也非全然悲觀,部分源自於全球對於資本回報的期待,也預估未來風險投資及創新也將轉向醫療衛生、遠距教學、大數據、電子商務、機器人等領域。

相關連結
你可能會想參加
※ 全球創新指數(GII)評估COVID-19對於全球創新的影響, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8528&no=55&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
全球首宗 GCP 中藥上市

  全球首宗通過西方臨床試驗的中藥新藥將在台上市,結合台灣、新加坡與大陸三地資金與技術發展出來的紅麴萃取藥物「壽美降脂一號」,本月十七日正式獲得國內衛生署中醫藥委員會許可通過,成為全球第一項符合西醫「優良臨床規範( GCP )」,獲准進入市場的複方植物用藥。   由於中藥複方治療的特性和西藥單一成分的結構有很大的不同,縱使美國過去曾投入相當多資源進行中草藥研發,但是至今並未有任何一項藥物完成三期臨床試驗,因此「壽美降脂一號」能通過衛生署的新藥審核,不僅對中藥界而言是一項破冰之舉,對我國新藥臨床也算是一大突破。「壽美降脂一號」是由新加坡華僑銀行子公司維用科技出資,由北京大學研發團隊從兩百多種紅麴中,篩選出特殊菌株後,授權台灣公司進行膠囊的開發。為了這項中藥新藥的核准許可,開發公司彥臣生技總計投入三年半時間,在中國醫藥大學附設醫院院長林正介主持下,完成第三期臨床試驗。中醫藥委員會及醫藥品查驗中心( CDE )為了慎重起見,又花了一年半時間審查,今年終獲得中醫藥委員會通過許可。   國內目前用來治療心血管疾病的降血脂化學藥物共有六種,一年市場規模三十五億元,其中最普遍的史塔汀( Statin )被發現有少數過敏副作用,紅麴萃取而成的「壽美降脂一號」,其目的就是為了突破化學藥物所產生的副作用。彥臣生技目前僅掌握「壽美降脂一號」的台灣銷售權,短期內可進一步獲得日、韓兩地市場銷售權,母公司維用科技已計劃利用台灣臨床試驗成果,進一步向美國 FDA 叩關。為了執行 GCP ,彥臣生技已自行開發一套中藥標準化的平台技術,該公司將和維用科技洽談技術授權,爭取進入美國市場機會。

英國資訊委員辦公室(ICO)發布企業自行檢視是否符合歐盟一般資料保護規則之12步驟

  英國作為歐洲金融重鎮,不論各行業均有蒐集、處理、利用歐盟會員國公民個人資料之可能,歐盟一般資料保護規則(General Data Protection Regulation,簡稱GDPR)作為歐盟資料保護之重要規則,英國企業初步應如何自我檢視組織內是否符合歐盟資料保護標準,英國資訊委員辦公室(Information Commissioner's Office, ICO)即扮演重要推手與協助角色。   英國ICO於2017年4月發布企業自行檢視是否符合GDPR之12步驟(Preparing for the General Data Protection Regulation(GDPR)-12 steps to take now),可供了解GDPR的輪廓與思考未來應如何因應: 認知(Awareness):認知GDPR帶來的改變,與未來將發生的問題與風險。 盤點資料種類(Information you hold):盤點目前持有個人資料,了解資料來源與傳輸流向,保留處理資料的紀錄。 檢視外部隱私政策(Communicating privacy information):重新檢視當前公告外部隱私政策,並及時對GDPR的施行擬定因應計畫。 當事人權利(Individuals'rights):檢視資料處理流程,確保已涵蓋GDPR賦予當事人如:告知權、接近權、更正權、刪除權、製給複本權、停止處理權、不受自動決策影響等相關權利。 處理客戶取得資料請求(Subject access requests):GDPR規定不能因為客戶提出取得資料請求而向其收費;限期於1個月內回覆客戶的請求;可對明顯無理或過度的請求加以拒絕或收費;如拒絕客戶請求則限期於1個月內須向其說明理由與救濟途徑等。 處理個人資料須立於合法理由(Lawful basis for processing personal data):可利用文書記錄與更新隱私聲明說明處理個人資料之合法理由。 當事人同意(Consent):重新檢視初時如何查找、紀錄與管理取得個人資料的同意,思考流程是否需要做出任何改變,如無法符合GDPR規定之標準,則須重新取得當事人同意。 未成年人(Children)保護:思考是否需要制定年齡驗證措施;對於未成年人保護,考慮資料處理活動是否需取得其父母或監護人的同意。 資料外洩(Data breaches):有關資料外洩的偵測、報告與調查,確保已制定適當處理流程。 資料保護設計與影響評估(Data Protection by Design and Data Protection Impact Assessments):GDPR使資料保護設計與影響評估明文化。 資料保護專責人員(Data Protection Officers):須指定資料保護專責人員,並思考該專責人員於組織中的角色與定位。 跨境傳輸(International):如執行業務需跨越數個歐盟會員國境域,企業則須衡量資料監管機關為何。

美國國際貿易委員會(USITC)發布「全球數位貿易報告」,推動數位經濟新機會

  2014年8月,美國國際貿易委員會(USITC)發布「美國與全球經濟體之數位貿易」政策報告,該報告係應美國國會參議院財政委員會(Senate Committee on Finance)之要求所進行之調查,期能夠深入了解數位貿易(Digital Trade)在美國與全球經濟體之間的發展,無論係透過網際網路(Internet)所進行之在地化商業行為抑或國際貿易,能夠有效指認出阻礙美國進入全球數位貿易市場之阻礙。   報告指出,數位貿易當有助於整體經濟之正面發展,例如促進通訊、加快商業交易、增進資訊近取,並能夠增進中小企業之市場機會。然而,根據所回收之調查數據顯示,目前存在著影響國際間數位貿易若干法制障礙,分別為:在地化的要求(localization requirements)、市場進入的限制(market access limitations)、資料隱私與保護規範要求(data privacy and protection requirements)、智慧財產權侵害(IPR infringement)、不確定之法律責任(uncertain legal liability)、公部門網路管制(censorship),以及在地消費者之不同要求(compliance with customs requirements)。   然而,報告也指出十項對於企業與消費者的新機會: 第一,在內容產業,將有助於扶持獨立的創作者;第二,在旅遊與住宿產業,可促進更佳的利用率;第三,網際網路有助降低求職摩擦,降低失業率;第四,增進線上服務之合作與整合,例如應用軟體介面經濟面之貢獻;第五,保險產業界運用巨量資料分析帶動之創新發展;第六,透過M2M通訊,改善製造流程;第七,農業界之數位創新;第八,網路使用者之資料蒐集,在隱私權考量與相關正面效益間取得平衡;第九,增進美國網路公司之全球競爭力;第十,促進中小企業之出口。   因此,對於欲進軍全球聯網市場之我國資通訊高科技業者來說,應當留意相關之法制障礙,遵循不同國家之法律規範,掌握聯網新興科技所帶動之下一波龐大商機。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP