合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。

  在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。

  英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。

  技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 合成資料(synthetic data), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8532&no=64&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

美國2016年製造創新策略方案

  依2014年復甦美國製造與創新法(RAMI Act of 2014),美國國家製造創新網絡計畫於2016年2月公布策略方案(Strategic Plan)。國家製造創新網絡有四大目標:以「提升製造競爭力」為終極目標,其他三個目標分別為「促進技術轉型」、「加速製造業人力發展」、以及「確保穩定與永續之基礎建設」。在「促進技術轉型」方面,旨在促進創新技術朝向具備可適性、擁有成本效益、以及高效能之國內製造業量能的方向轉型。由於不同的製造整備度(manufacturing readiness levels)對應不同的技術整備度(technology readiness levels),且國家製造創新網絡有其設定之目標範圍,因而研發機構被預期能夠促進技術轉型的亦有差異。   行政院於民國105年7月核定通過「智慧機械產業推動方案」,透過「智機產業化」與「產業智機化」來建構智慧機械產業生態體系。智慧機械將結合半導體先進製程、精密醫療機械加工與智慧服務型機器人、以及航太與造船軍民通用技術應用,分別對應帶動亞洲矽谷、生技醫藥、以及國防等創新產業政策。透過智慧機械帶動整體產業發展,從精密走向智慧、從單機走向系統,以提高整體產業之產值

美國聯邦通訊傳播委員會將表決是否開放閒置頻譜

  為釐清開放閒置頻譜(white space)予業者使用是否會產生干擾問題,美國聯邦通訊傳播委員會(Federal Communication Commission, FCC)所屬工程科技辦公室(Office of Engineering and Technology, OET)於上個月就閒置頻譜(white space)開放進行干擾測試,並在2008年10月15日公布結果報告。   工程科技辦公室表示,同時具有頻譜感測(spectrum sensing)以及定位(geo-location)功能之設備在測試中顯示對於既有使用者並不會造成干擾,是以,當美國於2009年2月17日完成無線電視數位化之後,閒置頻譜設備(white space devices, WSDs)應被允許使用於閒置頻譜。於此同時,聯邦通訊傳播委員會主席 Kevin Martin 在記者會中公開表示支持開放閒置頻譜,並宣布美國聯邦通訊傳播委員會將於2008年11月4日的公開會議中就此一議題進行表決。   美國國家廣播業者協會(National Association of Broadcasters, NAB)旋即在2天後向聯邦通訊傳播委員會提出緊急請願(emergency petition),希望聯邦通訊傳播委員會延後其表決時間,並就此一議題進行公共諮詢。國家廣播業者協會同時指出,該報告摘要對於測試過程所蒐集之資料解讀錯誤,國家廣播業者協會認為,根據該測試結果,未經取得執照且僅以頻譜感測技術避免干擾之閒置頻譜設備將會干擾既有的使用者。而非如該報告摘要所稱,應可開放同時具有頻譜感測技術及定位功能之閒置頻譜設備。截至目前為止,聯邦通訊傳播委員會尚未正式決定是否接受國家廣播業者協會之請求延後表決時間。

日本提出2020年創新願景的期中建言,主張應自未來需求中發掘創新方向

  日本經濟產業省所屬「研究開發與創新附屬委員會」於2020年5月29日統整了有關2020年創新願景的期中建言並作成報告。本次的願景建言,係著眼於日本於IT等領域無法推動新興產業的現狀,且在原本具有競爭優勢的領域上,又因新興國家崛起導致實質獲益降低,加之新型冠狀病毒疫情使經濟活動停滯等結構性變化,產生全球性的典範轉移等問題。故認為應自長遠觀點出發,視「從未來需求中發掘創新價值」的途徑為創新關鍵,化危機為轉機,並同步觀察國內外的動向,針對企業、大學、政府各界應採取的行動,綜整出2020年的期中建言。   本次期中建言以產業為核心,主要包含以下幾個面向:(1)政策:例如,為積極參與新創事業的企業規劃認證制度;透過修正產學合作指引、簡化〈技術研究組合(為成員針對產業技術,提供人力、資金或設備進行共同研究,並為成果管理運用,且具法人格的非營利組織型態)〉設立與經營程序、擇定地區開放式創新據點等手段深化與落實開放式創新;以「創造社會問題解決方案」與「保護關鍵技術」的研發活動為重心,鬆綁相關管制,並調整計畫管理方式等以協助技術投入市場應用;以2025年與2050年為期,就次世代運算(computing)技術、生化、材料與能源領域提出科技與產業發展的願景;藉由改善人才制度、數位轉型等方式,強化企業研發能量;(2)「從未來需求中發掘創新價值」概念:現行研發與導向商品化的模式,主要以既有的技術、設備等資源為基底,進行線性且單向的創新研發,重視短期收益與效率化,使成果應用未能貼近社會的實際需要,故未來應在此種模式之外,另從創造社會議題解決方案與切合未來需求的觀點出發,結合既有技術資源來擬定長期性的研發創新戰略並加以實踐;(3)產官學研各界角色定位與任務:大學與國立研發法人應強化其研發成果之商轉合作,調整課程內容以削減知識與人才產出不符合社會議題需要的問題;企業的創新經營模式,則應透過ISO56002創新治理系統標準、日本企業價值創造治理行動指針(日本企業における価値創造 マネジメントに関する行動指針)等標準實踐,擴大開放式創新的應用;政府則應採取調整稅制、建置活動據點等方式,建構並提供有利於開放式創新的環境,並針對產業發展願景中的關鍵領域(如感測器等AI應用關聯技術、後摩爾時代(post moore's law)運算技術、生化技術、材料技術、環境與能源技術等)進行投資。

TOP