合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。

  在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。

  英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。

  技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 合成資料(synthetic data), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8532&no=64&tp=1 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
德國專利商標局加入全球專利審查高速公路(GPPH)

  德國專利商標局(DPMA)於2015年7月6日加入全球專利審查高速公路(Global Patent Prosecution Highway,簡稱GPPH),基於此,德國在現有的PPH合作基礎上拓展12個其他的合作專利局。   PPH的目的是經由雙方交流和跨國界專利檢索與審查結果的使用以加速專利登記的處理,一方面維持專利審查的品質,同時形成有效率的專利審查程序。   從2015年7月6日起,一個加速審查的申請不只在德國專利商標局之前合作的9大PPH專利局,即:中國國家知識產權局、日本專利局、英國知識產權局、美國專利商標局、韓國知識產權局、加拿大知識產權局、芬蘭國家專利注冊委員會、新加坡知識產權局、奧地利專利局,還可以在下述12個國家或地區試行,即:澳大利亞知識產權局、丹麥專利商標局、俄羅斯聯邦知識產權局、匈牙利知識產權局、西班牙專利商標局、瑞典專利注冊局、葡萄牙工業產權局、愛沙尼亞專利局、以色列專利局、挪威知識產權局、冰島專利局、北歐專利局(包括丹麥專利商標局、挪威知識產權局、冰島專利局)。   對申請人來說這個制度的優點是,未來若申請人的專利申請案的請求項在參與GPPH的任一國家或地區的專利機構已經被認為具有可專利性,那麼申請人可以要求作為後續申請受理局的德國專利商標局進入簡易程序,以獲得加速審查。

產業競爭力強化法新發展-以企業實證特例制度實例為中心

美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制

  川普總統在2018年4月發布「總統管理議程」(President’s Management Agenda)將國家科研成果商業化之發展視為「聯邦跨機關優先目標」(Cross-Agency Priority Goal, CAP Goal)。為維持美國全球科技創新領先地位,美國政府每年投資約1500億美元於各聯邦所屬大學與研究機構進行科技研究。美國國家標準與技術中心(NIST)與白宮科技政策辦公室(OSTP)聯合發起「投資報酬計畫」(Return on Investment Initiative, ROI),宗旨為釋放美國創新(Unleashing American Innovation),讓政府投資預算發揮科研補助之最大效益。   計畫目的包括:1.評估現行政府從事技術移轉指導原則,檢視應予以維持與待改革之處;2.吸引後期研發、商業化與先進製程的技轉投資,並降低法規阻礙;3.支持科研創新產官學合作模式與技轉機制;4.有效移除技轉阻礙以利加速技轉成效,並聚焦於國家重要產業發展的新興措施;5.評估聯邦政府資金運用指標成效;6.創造激勵學研機構提升技轉成效之誘因。   NIST調查指出,阻礙技轉發展之原因包括:1.技轉與智慧財產權協商所涉高額交易與時間成本;2.不同政府單位對法規之解釋、適用與實踐意見相歧;3.智慧財產權保護不足、技術授權使用限制與政府行使介入權(march-in rights)限制;4.公務員參與科技新創與衍生企業(spin-off)限制與利益衝突規範。此ROI計畫已於2018年7月30日完成各方意見徵詢,總計共104份。預計於2019年年初,做出完整分析報告與法制建議。

一名挪威學生提供違法音樂下載連結被判侵權

  一名挪威學生,因執行校內某項計畫而在2001年架設了一個名為Napster.no的網站。該網站和知名的Napster.com並無關聯。由於Napster.no提供了可免費下載MP3音樂的連結,因而使該名學生遭到Universal Music AS等的著作權侵權指控,並被判賠15900美元。案經上訴,日前挪威最高法院已做出判決,下級法院的判決仍被維持。

TOP