美國德克薩斯州聯邦北區地方法院駁回德國汽車零組件供應商大陸集團對Avanci授權SEP模式違反反托拉斯法訴訟

  美國德克薩斯州北區聯邦地方法院於2020年9月10日,駁回德國汽車零組件供應商大陸集團(Continental Automotive Systems)針對高通、諾基亞、夏普及其他電信公司透過Avanci授權標準必要專利(Standard Essential Patents, SEP)模式違反反托拉斯法的訴訟。法院指出,Avanci是由SEP專利技術擁有者組成的專利授權平台,而Avanci繞過零組件供應商,直接與汽車製造商就授權協議進行談判,並未違反反托拉斯法。

  按大陸集團係依據《休曼法》(Sherman Antitrust Act)第2條提出反壟斷訴訟,指Avanic及其成員濫用標準制定的壟斷力量,排除其他技術擁有者並提高專利授權費用。對此,法院列舉聯邦第九巡迴法院在FTC v. Qualcomm案的相同看法指出,該行為是屬於Avanic及成員的契約問題,即SEP持有人可以選擇依照公平、合理、無歧視(Fair, Reasonable, Non-discriminatory, FRAND)的契約方式限制SEP授權,但違反此契約義務並不違反反托拉斯法。大陸集團主張SEP持有人違反FRAND授權承諾,欺騙標準制定組織,從而將專利納入產業標準;但即使這種欺騙會將被告的競爭者排除在標準之外,乃是針對競爭者本身而不是對競爭過程的損害,SEP權利人藉由價格歧視(Price Discrimination)合法地將專利價值最大化並不違反反托拉斯法。

  另外,原告控訴依據還包括《休曼法》第1條,禁止事業以契約等方式限制競爭。但法院認為Avanci授權模式是與組成公司間協議訂定,該協議並不會阻止成員向非製造端客戶單獨授權。在SEP授權人拒絕與原告進行談判,或僅同意以向汽車製造商授權的相同價格與零組件供應商進行交易,頂多屬於SEP權利人間的個別行動,並未違反反托拉斯法,因而駁回訴訟。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國德克薩斯州聯邦北區地方法院駁回德國汽車零組件供應商大陸集團對Avanci授權SEP模式違反反托拉斯法訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8551&no=55&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

台南市低碳自治條例與國際促進能源效率立法趨勢

台南市低碳自治條例與國際促進能源效率立法趨勢 科技法律研究所 2013年3月26日 壹、事件摘要   根據自由時報3月5日報導,台南市為將該市打造為國際指標性之低碳城市,在去年制訂了「台南市低碳城市自治條例」,並在未來規劃對大建築面積、及用量超過800千瓦之用戶,要求必須裝置一定比例太陽光電系統的強制規定。該條例同時要求公有、及供公眾使用的建築物,須為銀級以上綠建築之規定,亦在近日吸引了媒體的關注。 貳、重點說明 一、臺南市政府低碳城市自治條例   台南市政府於2012年12月22日以府法規字第1011084760A號令公布了「台南市低碳城市自治條例」,共六章、三十八條,並於第四章「低碳城市推動與管理」,做了前述對耗電大的用戶為一定比例太陽能光電系統設置要求之規範。   在綠建築的部分,依據該條例第21條第1款之規定,台南市公有或經該市公告指定地區之新建建築物於申請建造執照時,若非供公眾使用之建築物,須為合格級以上之綠建築。而公有及供公眾使用之建築物,則須進一步符合為銀級以上之綠建築。此策略採取賦予公部門較高的法規遵循義務,與國外立法例趨勢相當吻合。詳述如下。 參、事件評析 一、國外立法例 (一)從一定面積以上面積建築著手   根據自由時報的報導,台南市政府在未來將針對大建築面積用戶,強制其裝設用電量一定比例的太陽光電系統。關於面積的細部規範雖然未見於該市低碳自治條例,但此一規劃無疑符合國際間為提高節能效率所採取的規範趨勢。   例如美國在2007年能源獨立及安全法架構下,由總統在2009年所發佈的行政命令第13514號的第2條第g項第3款,即要求確保既有聯邦建築或聯邦機構(agency)所承租之建築,面積超過5000平方英呎者,應在財政年度2015年前,使其面積的15%完全符合「聯邦永續建築指導原則」(Federal Leadership in High Performance and Sustainable Building, 在該行政命令中簡稱 Guiding Principle)。   而新加坡也有類似的規範。根據該國「2008年建築管制(環境永續)規定」(Building Control《Environmental Sustainability》2008)第3條與第4條之規定,所有總樓板面積(gross floor area) 超過2,000平方公尺的建築之建設或有關總樓板面積超過2,000平方公尺既有建築之面積增建(increasing the gross floor area),或關於建築外殼或建築服務的提供、擴大或實質的改變,皆應至少達到依據建築環境永續規範(Code for Environmental Sustainability of Buildings)的綠色標誌積分(Green Mark scores) 50分。 (二)對公部門採取較民間更高標準   由前述關於南市低碳自治條例中關綠建築之規範可知,該市在為相關管制的規劃時,所採取的政策是讓公部門先承擔較高的法規遵循義務(在該條例第21條的規定中,公有建築物在申請建照時須符合銀級綠建築之標準,而不若一般非供眾使用之建築物,僅要求其須合格)。此種作法亦為國際間為引領民間部門推動節能減碳常見的法制政策規劃。   除了上述美國的規定也是先對公部門作要求外,歐盟能源指令第5條第1項也有類似之規範。該條款要求歐盟各會員國自2014年1月1日起,就其中央政府所擁有或佔有之面積超過500平方公尺之建築,每年應翻修總樓板面積的3%,使其至少符合建築效率指令(2010/31/EU, Directive on Energy Performance of Buildings)第4條關於最低建築能源效率(minimum energy performance requirements for buildings)之要求。 二、短評與小結   由上述介紹可知,台南市低碳自治條例,為促進節能減碳而採行諸如由一定面積以上建築物著手,並對公部門此取更高標準之規定皆與國際趨勢相符。無獨有偶,高雄市於去年通過的綠建築自治條例,也有類似規定。我國在各級地方政府皆能與國際接軌的共同努力下,能否在促進能源效率方面達成較歐美等先進國家更耀眼的成積,著實令人期待。

日本特許廳持續就專利商標查詢平台(J-PlatPat)進行效能優化

  國際智慧財產權的檢索、查詢,幫助技術、競爭的情報蒐集,是企業能夠規劃出智財布局的優先前提。日本特許廳為提升「專利商標查詢平台」(J-PlatPat)之功能及查詢便利性,規劃就現有平台機能進行擴充,預計在2019年5月時,全面改版完成。特許廳本次J-PlatPat的改版,主要更新或擴充項目包括:將設計專利及商標於審查、審判階段之文件納入可查詢之範圍,並縮短資料上傳時間,使相關文件於上傳隔日即可查詢;增加商標存續狀態之呈現,並增加已廢止商標之檢索;採用人工智慧進行翻譯,提升翻譯品質等;亦針對關鍵字、搜尋結果排序、圖面之運用、設計專利之圖面呈現方式進行優化。   改版後之專利、商標檢索系統便利性,大幅提升,使用上亦毋需支付任何費用。日本特許廳J-PlatPat(https://www.j-platpat.inpit.go.jp/)是個免費的資源,我國企業、學界的智財實務工作者可善加運用此平台,更有效率地達成技術和競爭情報檢索,在專利、商標的國際性競爭中勝出。

歐盟執委會發布「民用、國防與航太產業之協同行動計畫」,強調前瞻技術的產業研發協作與成果運用

  歐盟執委會(European Commission)於2021年2月22日發布「民用、國防與航太產業之協同行動計畫」(Action Plan on Synergies between Civil, Defence And Space Industries),作為進一步加強歐盟前瞻科技與和相關基礎產業的行動方針。這也是歐盟首次以歐盟防禦基金(European Defence Fund)策畫補助民用、國防與航太產業領域中具有泛用性及破壞式潛力的前瞻科技(例如雲端、處理器、網路、量子和人工智慧等),以強化歐盟創新能力。   該行動計畫之目標為:(1)the synergies(協作):強化歐盟相關計畫與研究工具的互補性,使其得以涵蓋研究(research)、開發(development)和部署(deployment)三個區塊,並增加投資效益和成果有效性;(2)the spin-offs(衍生企業):本行動計畫鼓勵國防投資以促進國防研究衍生企業,使國防和太空的創新研究成果得以作為民用,持續發展相關技術;(3)the spin-ins(內部創新):前瞻領域的創新往往來自新創事業、中小企業和民間科研機構,因此本行動計畫促進歐洲各國國防合作計畫執行時運用民用產業創新研發成果,避免重複研究耗費資源。   為達到前述目標,該行動計畫臚列11個民用、國防與航太產業共同協作行動,並可綜整為四大方向:(1)創建框架以加強歐盟在相關計畫和研究工具間的協同作用和互惠(cross-fertilisation),例如在數位、雲端和處理器等產業領域建立共通框架;(2)關鍵技術(critical technologies)開發應確保系統一致,包含初步確認關鍵技術與未來相容性要求、進一步共同確認技術發展藍圖、最後確定旗艦計畫(flagship projects)間應減少依賴性並增加標準化和互操作性(interoperability),同時促進跨境與跨域合作;(3)建立創新孵化器(innovation incubator)網路支持新創事業、中小企業和科研機構(Research & Technology Organisation, RTO)的創新;(4)發展三大旗艦計畫,分別為無人機技術(drone technologies)、以航太為架構的安全連結技術(space-based secure connectivity)、以及太空交通管理技術(space traffic management),並藉由計畫發展相關產業使歐盟成為改變世界規則之領導者。   此外,該行動計畫雖然目前僅限於使用在歐盟級計畫和研究工具,但也可能積極影響並觸發歐盟各國仿效類似行動,進一步影響歐盟境外合作夥伴共同支持該行動。

TOP