美國德克薩斯州聯邦北區地方法院駁回德國汽車零組件供應商大陸集團對Avanci授權SEP模式違反反托拉斯法訴訟

  美國德克薩斯州北區聯邦地方法院於2020年9月10日,駁回德國汽車零組件供應商大陸集團(Continental Automotive Systems)針對高通、諾基亞、夏普及其他電信公司透過Avanci授權標準必要專利(Standard Essential Patents, SEP)模式違反反托拉斯法的訴訟。法院指出,Avanci是由SEP專利技術擁有者組成的專利授權平台,而Avanci繞過零組件供應商,直接與汽車製造商就授權協議進行談判,並未違反反托拉斯法。

  按大陸集團係依據《休曼法》(Sherman Antitrust Act)第2條提出反壟斷訴訟,指Avanic及其成員濫用標準制定的壟斷力量,排除其他技術擁有者並提高專利授權費用。對此,法院列舉聯邦第九巡迴法院在FTC v. Qualcomm案的相同看法指出,該行為是屬於Avanic及成員的契約問題,即SEP持有人可以選擇依照公平、合理、無歧視(Fair, Reasonable, Non-discriminatory, FRAND)的契約方式限制SEP授權,但違反此契約義務並不違反反托拉斯法。大陸集團主張SEP持有人違反FRAND授權承諾,欺騙標準制定組織,從而將專利納入產業標準;但即使這種欺騙會將被告的競爭者排除在標準之外,乃是針對競爭者本身而不是對競爭過程的損害,SEP權利人藉由價格歧視(Price Discrimination)合法地將專利價值最大化並不違反反托拉斯法。

  另外,原告控訴依據還包括《休曼法》第1條,禁止事業以契約等方式限制競爭。但法院認為Avanci授權模式是與組成公司間協議訂定,該協議並不會阻止成員向非製造端客戶單獨授權。在SEP授權人拒絕與原告進行談判,或僅同意以向汽車製造商授權的相同價格與零組件供應商進行交易,頂多屬於SEP權利人間的個別行動,並未違反反托拉斯法,因而駁回訴訟。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國德克薩斯州聯邦北區地方法院駁回德國汽車零組件供應商大陸集團對Avanci授權SEP模式違反反托拉斯法訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8551&no=66&tp=5 (最後瀏覽日:2026/01/08)
引註此篇文章
你可能還會想看
美國州隱私法要求企業揭露資訊 企業應如何平衡隱私法與營業秘密的衝突

美國目前沒有聯邦的隱私法,由各州訂定州隱私法、產業隱私法,要求企業應揭露資訊以提升資訊透明度,然而隱私法要求企業揭露的資訊多涵蓋了企業的營業秘密。美國華盛頓州州長於2023年4月27日簽署《我的健康資料法(My Health My Data Act)》的州隱私法,其將消費者的健康資料廣義定義為「與消費者有關或具合理關聯的個人資料,可用於識別消費者過去、現在或未來的物理或心理健康狀況」,例如醫療相關資料、患者接受醫療服務的精確地理位置、透過非健康資料可推斷得出的資料。「非健康資料可推斷得出的資料」,如零售業者蒐集消費者近期採購的訂單內容(非健康資訊),並透過AI機器學習分析得出消費者可能懷孕的比例及預產期,藉此對該消費者投放零售業者的嬰幼產品的個人化廣告。 於《我的健康資料法》廣義定義「健康資料」下,導致消費者可要求企業提供的資料可能涵蓋了「企業長期累積之消費者使用資料、經演算法分析運用之消費者使用資料、共享消費者資料的第三方企業名單」等企業認為屬於其營業秘密的資料。 為平衡隱私法的資訊透明度及企業想保護其營業秘密,建議企業可先採取:  1.使公司的智財部門與資料保護部門合作,確保公司人員對公司營業秘密標的及範圍的認知一致,並盤點企業所有的營業秘密以製作、持續更新營業秘密清單。 2.企業在揭露受營業秘密保護的資料給消費者前,先與消費者簽訂保密契約,並參考前述營業秘密清單約定契約之保密範圍。 如企業欲採取更完備的營業秘密管理措施,建議參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

新加坡個人資料保護委員會2017年7月發布資料共享指引

  新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2017年7月27日發布資料共享指引(GUIDE TO DATA SHARING),該指引協助組織遵守新加坡2012年個人資料保護法(Personal Data Protection Act 2012, PDPA),並提供組織內部和組織之間的個資共享指引,例如得否共享個資,與如何應用,以確保符合PDPA共享個資之適當方法;並得將特定資料共享而豁免PDPA規範。該指引共分為三部分,並有附件A、B。   指引的第一部分為引言,關於資料共享區分為三種類型探討: 在同一組織內或關係組織間共享 與資料中介機構共享(依契約約定資料留存與保護義務) 與一個或多個組織共享(在不同私部門間、公私部門間)   共享包含向一或多組織為利用、揭露或後續蒐集個資;而在組織內共享個人已同意利用之個資,組織還應制定內部政策,防止濫用,並避免未經授權的處理、利用與揭露;還應考慮共享的預期目的,以及共享可能產生的潛在利益與風險。若組織在未經同意的情況下共享個資,必須確保根據PDPA的相關例外或豁免之規定。   指引的第二部分則在決定共享資料前應考慮的因素: 共享目的為何?是否適當? 共享的個資類型為何?是否與預期目的相關? 在該預期目的下,匿名資料是否足以代替個資? 共享是否需要得同意?是否有例外? 即使無須同意,是否需通知共享目的? 共享是否涉及個資跨境傳輸?   上述因素還能更細緻對應到附件A所列應思考問題,附件B則有相關作業流程範例。   指引的第三部分,具體說明如何共享個資,與資料共享應注意規範,並提供具體案例參考,值得作為組織遵守新加坡個人資料保護規範與資料共享之參考依據。

美國交通部發布國家道路安全戰略,建立五大核心目標期待實現道路零死亡願景

  美國交通部(U.S. Department of Transportation)於2022年1月27日發布「國家道路安全戰略」(National Roadway Safety Strategy, NRSS),向道路零死亡的長期目標邁出第一步。NRSS採取「安全系統方法」(Safe System approach)作為解決道路安全問題的指導性框架,其內容涵蓋行為干預(behavioral interventions)、道路應對措施(roadway countermeasures)、法律與政策之執行、車輛安全特性與性能,及緊急醫療照護等層面。不同於傳統安全方法,安全系統方法承認人為錯誤與人性脆弱的事實,基於道路死亡應可預防之原則,利用可提前準備的主動工具(Proactive Tools)預先識別並解決交通系統中的問題,並且建立一套能有效解決或降低風險的備援系統(redundant system),以確保某一環節發生故障時,其餘部份仍可正常運作。   NRSS將以五大核心目標為主軸,規劃全面性的安全措施,以實現道路零死亡願景。上述五大核心目標包括: (1)更安全的人們(safer people):鼓勵用路人採取安全、負責之行為,避免酒駕或毒駕等危險行為。 (2)更安全的道路(safer roads):設計可減少人為錯誤之道路環境,提高脆弱用路人安全移動之可能性。 (3)更安全的車輛(safer vehicles):透過改進既有技術與設備,並擴大對有效防止碰撞及使影響最小化的車輛技術與功能之使用,提高車輛安全性並降低碰撞頻率,例如:透過先進駕駛輔助系統(Advanced Driver. Assistance Systems, ADAS)預防或減輕碰撞的影響;或是利用偏離車道警示系統對車輛進行監控與紀錄,如檢測到車輛偏離車道,則立即向駕駛發出警報。此外應建立公共資訊資料庫,以便提供資訊幫助車輛安全行駛。 (4)更安全的速度(safer speeds):透過結合環境的道路設計、教育與推廣活動,以及活用自動測速器、依路段環境進行速限等方式,有效控制車輛行駛速度。 (5)事故後照護(post-crash care):透過完善緊急醫療照護提高事故存活率,並落實交通事故管理,避免事故再次發生。

TOP