新加坡個人資料保護法修正草案

  新加坡通訊及新聞部(Ministry of Communications and Information, MCI)與新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於西元2020年5月14日至28日間針對其「個人資料保護法修正草案」進行民眾意見諮詢,總共收到87份回覆。綜合民眾回覆之意見後,同年10月5日,於議會提出了「個人資料保護法修正草案」,修正重點如下:

  1. 提高外洩個人資料者罰鍰金額,至該公司在新加坡年營業額10%或1000萬美元。MCI / PDPC說明,實際上於裁罰前會綜合考量個案事實與相關因素(如:嚴重性、可歸責性、影響狀況、組織有無採取任何措施減輕個資外洩造成的影響等),作為裁罰金額的判斷依據。此外,新加坡的個人資料保護法也加入了個資外洩通知義務,但與歐盟一般資料保護規範(General Data Protection Regulation, GDPR)仍有不同,例如:其多了評估是否通知的機制。
  2. 組織基於商業改善之目的,且遵守法定條件下,得未經同意使用個人資料,此處商業改善目的包含:(1)改善或加強提供之商品或服務,或開發新的商品或服務;(2)改善或發展新的營運方式;(3)瞭解客戶喜好;(4)客製化商品或服務所需。
  3. 在公司併購、重組、出售股份以及經營權轉讓等關於公司資產處置情形,得例外無需經當事人同意而蒐集、處理與利用個人資料。
  4. 新增資料可攜權相關規定。
  5. 處罰未經授權者處理個人資料之行為。針對民眾回覆之疑慮(認為草案內容不明確),MCI / PDPC說明預計在《法規與諮詢指南》中闡明有關授權行為的細節性規定,包含採取的形式。

相關連結
你可能會想參加
※ 新加坡個人資料保護法修正草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8556&no=64&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
美國司法部發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」之最終規則,以因應國家安全威脅

美國司法部(Department of Justice, DOJ)於2025年1月8日發布「防止受關注國家或個人近用美國敏感個人資料與政府相關資料」(Preventing Access to U.S. Sensitive Personal Data and Government-Related Data by Countries of Concern or Covered Persons)之最終規則。該規則旨在避免特定國家或個人獲取大量國民敏感個人資料及政府相關資料,以降低國安威脅。 最終規則指出,去識別化敏感個人資料若經大量蒐集,仍可能被重新識別,因此原則上禁止或限制任何美國人在知情的情況下,與受關注的國家或個人進行該等資料的大量交易。其將敏感個人資料定義為社會安全碼、精確地理位置、車輛遙測資訊(vehicle telemetry information)、基因組以及個人健康、財務資料或其他足資識別個人之資料,並定義禁止及限制交易的型態。同時,最終規則除設有若干豁免交易類型外,也定有一般及特別許可交易規定,並授權司法部得核發、修改或撤銷前述許可。一般許可交易的類型將由總檢察長另行公布;特別許可則由總檢察長依個案酌情例外核准。 該規則課予交易方持續報告(reporting)、盡職調查(due diligence)、稽核(audit)、紀錄留存(recordkeeping)等義務,並針對涉及政府相關資訊或美國國民大量敏感個人資訊之商業交易,例如投資、雇傭、資料仲介(data brokerage)及供應商契約,提出資安要求,以降低受關注國家或個人獲取該類特定資訊的風險。最後,該規則定有民事罰款(37萬美金以下)、刑事處罰(100萬美金以下或20年以下徒刑),並設立申訴之救濟措施。

智慧綠建築推動方案之修正—新增公有新建建築物應符合綠建築指標

美國為加強聯邦補助生物科研之安全性而提出新規範

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。   德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。   例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。

TOP