美國白宮為因應TikTok威脅,於2020年8月6日頒布第13942號行政命令,以確保資通訊技術與供應鏈國家安全,禁止在美國管轄範圍內的任何人或相關實體,與中國大陸「字節跳動(ByteDance)」及其子公司為任何交易行為。本行政命令係依據美國《國際緊急經濟權力法》(International Emergency Economic Powers Act, IEEPA)、《國家緊急狀態法》(National Emergencies Act, NEA)及《美國法典》(United States Code, U.S.C.)第3篇第301條,以及2019年5月15日頒布的第13873號行政命令,要求國家應維護資訊、通信技術和供應鏈安全,並採取措施以應對國家緊急情況。由中國大陸企業開發及所有的行動應用程式,例如TikTok及WeChat等已威脅到美國國家安全、外交政策及經濟利益,必須採取應對措施。據查TikTok會自動從使用者方擷取大量資料,包括網際網路、定位資料及瀏覽紀錄等。此種資料蒐集行為將使外國人及政黨可以取得美國個人的專屬敏感資訊,追蹤到聯邦政府人員及政府承包廠商位置,建立個人資料檔案進行勒索和商業間諜活動。美國國土安全部、美國運輸安全管理局(Transportation Security Administration, TSA)和美國武裝部隊,已禁止在聯邦政府的通訊設備上使用TikTok,防止資料被竊取並傳輸至境外伺服器。
面對美國全面封殺中國大陸資通訊產品,中國大陸近來亦透過出口管制方案進行反制,2020年8月28日中國大陸商務部會同科技部,調整《中國禁止出口限制出口技術目錄》,將涉及軍民兩用的53項技術,納入出口管制清單。凡涉及向境外技術移轉,無論是採用貿易、投資或是其他方式,皆須申請省級商務主管部門的技術出口許可,獲得批准後方可對外進行實質性談判,簽訂技術出口契約。其中,因TikTok的人工智慧與演算技術,已被含蓋在目錄的管制清單內,若是TikTok要從中國大陸境內轉讓相關技術服務予境外,應暫停相關交易及實質性談判,先履行申請許可程序再為後續行動。
本文為「經濟部產業技術司科技專案成果」
日前,美國加州公共事業委員會(California Public Utilities Commission, CPUC)一致投票通過「可再生能源招標機制」(Renewable Auction Mechanism, RAM)。該委員會期待藉由此種招標機制的上路實施,在加州境內發展各種中小型可再生能源企劃案,並且針對此種企劃案下所生產之再生能源開放最高收購電力為20MW的採購標準。 可再生能源招標機制之實行方式為欲參與該招標機制之企劃案業者,在一年兩次的拍賣期間提出不可議價之拍賣出價,以爭取相關招標企劃案之補助經費。該種企劃案具有1. 符合加州可再生投資組合標準(Renewable Portfolio Standard, RPS)下之20% 投資比例,2.得標企劃案之相關設施地點位於加州境內三大投資人擁有(investor-owned utilities, IOUs)的電力事業服務範圍內,和3. 最高收購再生能源電力為20MW的特性。拍賣出價期間結束後,美國加州公共事務委員會會選擇最小花費之出價企劃案,並與得標之企劃案業者簽署長程契約,而該企劃案業者也會被列於快速發展建設計劃之名單中,以進行後續的計畫發展與相關設備建設。 目前加州相關當局針對小型可再生能源企劃案,傳統上適用一固定費率之電力收購制度(feed-in tariff, FIT)。然而,即便可再生能源招標機制之實施方式與FIT類似,卻沒有能源價格因立法管轄權和其他因素所造成之不確定性存在。故此,在可再生能源招標機制下之企劃案業者可依其所能負擔之價格參與競標,此外亦可防止如西班牙和其他地方所發生之FIT市場過熱之情況產生。 對於可再生能源招標機制之推行及實施,加州公共事業委員會希望其能產生促進競爭、提供最低花費與促進發展相關資源之結果。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
Like or Not!德國地方法院針對facebook「讚」按鈕功能之判決日前有新聞報導,google將推出「+1」按鈕功能,用戶可以點擊該按鈕,向好友推薦特定的搜尋結果,市場上普遍預測google新增此「+1」按鈕功能,主要是用來跟facebook「讚」按鈕(Like Button)競爭。facebook「讚」按鈕功能已成為時下潮流新用語,諸如「給你一個讚」;而且還可以將facebook「讚」按鈕安裝在個人的部落格網頁、文章中。惟facebook的這項功能,一直以來也存在著侵害用戶個人隱私之疑慮。 德國柏林地方法院於今年(2011)03月14日針對facebook「讚」按鈕功能作出一則判決(LG Berlin, Beschluss vom 14.03.2011 - 91 O 25/11)。本案被告經營一項與原告相同的電子商務業務,並在其線上商店網頁中,安裝facebook「讚」按鈕(Gefällt-mir-Button)功能。判決中指出,安裝facebook「讚」按鈕,須運用facebook內建框架(iframe)語法,一旦安裝後,只要是登錄facebook的用戶,同時瀏覽被告網頁時,即使未點擊被告網頁上的「讚」按鈕,用戶的使用記錄都會回傳至facebook。但被告網頁上並未刊登任何有關提醒用戶注意該項資料蒐集、回傳之訊息。 原告因而主張,被告未盡到告知用戶有關個人資料蒐集、加工資訊之義務,已經違反電信服務法(Telemediengesetz,以下簡稱TMG)第13條規定,因而構成不正競爭防止法(Gesetz gegen den unlauteren Wettbewerb,以下簡稱UWG)第4條第11款規定之不允許交易行為。UWG第4條第11款規定「違反本質上涉及交易相對人(Marktteilnehmer)之利益的市場行為(Marktverhalten)有關之法律規定,亦屬於不允許的交易行為(unlautere geschäftliche Handlungen)。」 柏林地方法院認為,TMG第13條本質上係與個人資料保護有關之規定,與涉及交易相對人之利益的市場行為無關,故本案無UWG第4條第11款規定之情形,與不正競爭行為無關,原告之主張因欠缺請求權基礎而敗訴。 然而,值得注意的是,本案法院並未進一步針對被告行為是否違反TMG第13條「有關個人資料保護」之規定提出其見解。TMG第13條係依據「歐盟1995年個人資料保護指令」轉換而來,TMG第13條規定,若網站涉及個人資料的蒐集、加工行為,電信服務提供者(Diensteanbieter)有義務明確告知用戶相關訊息(包括明確告知用戶其可隨時撤回許可相關資料蒐集之表示等)。 爰此,被告於個人網頁安裝facebook「讚」按鈕功能,卻未告知用戶個人資料蒐集、加工之相關訊息,是否違反TMG第13條規定之告知義務,尚有待上級審加以定奪。而判決出爐後,也有專家建議,為避免有侵害個人資料之虞,在社群網站安裝facebook「讚」按鈕時,宜加註個人資料處理、保護之相關聲明。
新冠疫情下日本的數位經濟實踐之路新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日 2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題 數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。 針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。 執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例 就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。 提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析 有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。 經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。